### **Consortium for Worker Education**

# **IBEW Local 3 Aptitude**

# Test Prep Manual

### IBEW Local 3 Aptitude Entrance Exam Test Items



#### **Practice Materials**

Learning Express teach-nology.com math.about.com eei.org math-drills.com

mechanical-aptitude-tests.com fldoe.org/core/fileparse.php Elevator Mechanic exam (old) NYC Sanitation Worker Test Review Guide

## Contents

| Basic Math Refresher  | 1   |
|-----------------------|-----|
| Numerical Sequences   | 41  |
| Plug In PEMDAS        | 55  |
| Variables             | 81  |
| Linear Equations      | 93  |
| Dimensional Analysis  | 123 |
| Reading Comprehension | 137 |

# **Basic Math Refresher**

Fraction/Decimal Conversions Radicals Signed Numbers

### STUDY RESOURCES FOR LEVEL A

| READING                                                                                    | ISBN                                                         |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Achieving TABE Success in Reading,<br>Level A Workbook ©2006                               | 978-0-07-704462-6                                            |
| Achieving TABE Success in Reading,<br>Level A Reader ©2006                                 | 978-0-07-704466-4                                            |
| Essential GED ©2002                                                                        | 978-0–07–252754–4                                            |
| GED Language Arts, Reading ©2002                                                           | 978-0-8092-2231-5                                            |
| GED Science ©2002                                                                          | 978-0-8092-2230-8                                            |
| GED Social Studies ©2002                                                                   | 978-0-8092-2229-2                                            |
| TABE Skill Workbooks: Level A,<br>Construct Meaning and Evaluate /<br>Extend Meaning ©2011 | 978-0-07-660376-3                                            |
| TABE Skill Workbooks: Level A,<br>Graphic Information ©2011                                | 978-0-07-660374-9                                            |
| TABE Skill Workbooks: Level A, Words<br>in Context and Recall Information<br>©2011         | 978-0-07-660375-6                                            |
| The Complete GED ©2002                                                                     | 978-0-8092-9469-5                                            |
| Thumbprint Mysteries, Teacher's<br>Manual, Level Eight ©2001                               | 978-0-8092-9584-5                                            |
| Top 50 Reading Skills for GED Success<br>©2006                                             | 978-0-07-704481-7                                            |
| Top 50 Science Skills for GED Success<br>©2007                                             | 978-0-07-704475-6                                            |
| Top 50 Social Studies Skills for GED<br>Success ©2007                                      | 978-0-07-704472-5                                            |
| Instruction Targeted for TABE Success,<br>Level A (software)                               | 978-0-07-655485-0<br>(site/ LAN)                             |
| MHC Interactive: GED (software)                                                            | 978-0-07-250328-9<br>(single)<br>978-0-07-250327-2<br>(site) |

| MATH COMPUTATION                                                                                                 |                                                            |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Achieving TABE Success in Math,                                                                                  | 978-0–07–704470-                                           |
| Calculator Power for the GED ©2002                                                                               | 978-0-07-251697-                                           |
| Calculator Essentials for the GED<br>©2003                                                                       | 978-0–07–286085–                                           |
| Essential GED ©2002                                                                                              | 978-0-07-252754-                                           |
| GED Mathematics ©2002                                                                                            | 978-0-8092-2232-                                           |
| GED Mathematics Exercise Book<br>©2002                                                                           | 978-0-8092-2237-                                           |
| Number Power 6: Word Problems<br>©2000                                                                           | 978-0-8092-2378-                                           |
| Number Power Review ©2000                                                                                        | 978-0-8092-2379-                                           |
| TABE Skill Workbooks: Level A,<br>Decimals and Fractions ©2011                                                   | 978-0-07-660380-                                           |
| TABE Skill Workbooks: Level A,<br>Integers and Percents©2011                                                     | 978-0-07-660381-                                           |
| TABE Skill Workbooks: Level A,<br>Numbers, Number Operations,<br>Computation in Context, and<br>Estimation ©2011 | 978-0-07-660383-                                           |
| TABE Skill Workbooks: Level A,<br>Patterns, Functions, and Algebra<br>©2011                                      | 978-0-07-660386-                                           |
| The Complete GED ©2002                                                                                           | 978-0-8092-9469-                                           |
| The GED Math Problem Solver ©2003                                                                                | 978-0–07–252755–                                           |
| The Math Problem Solver ©2003                                                                                    | 978-0-07-294300-                                           |
| Top 50 Math Skills for GED Success<br>©2004                                                                      | 978-0–07–297383–                                           |
| Instruction Targeted for TABE Success, Level A (software)                                                        | 978-0-07-655485<br>(site/ LAN                              |
| MHC Interactive: GED (software)                                                                                  | 978-0-07-250328-<br>(single)<br>978-0-07-250327-<br>(site) |

#### **APPLIED MATH**

| 04470-1             | Achieving TABE Success in Math,                                                                         | 978-0-07-704470-1                            |
|---------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 51697–5             | Level A ©2006<br>Calculator Power for the GED ©2002                                                     | 978-0–07–251697–5                            |
| 36085–6             | Calculator Essentials for the GED ©2003                                                                 | 978-0–07–286085–6                            |
| 52754-4             | Essential GED ©2002                                                                                     | 978-0–07–252754–4                            |
| -2232-2             | GED Mathematics ©2002                                                                                   | 978-0-8092-2232-2                            |
| -2237-7             | GED Mathematics Exercise Book ©2002                                                                     | 978-0-8092-2237-7                            |
|                     | Number Power 3: Algebra, ©2000                                                                          | 978-0-8092-2388-6                            |
| -2378–7             | Number Power 6: Word Problems ©2000                                                                     | 978-0-8092-2378-7                            |
| -2379–4<br>60380-0  | Number Power 7: Problem Solving and<br>Test–Taking Strategies, ©2000                                    | 978-0-8092-2386-2                            |
|                     | Number Power 9: Measurement ©1996                                                                       | 978-0-8092-9891-4                            |
| 60381-7             | Number Power Review ©2000                                                                               | 978-0-8092-2379-4                            |
| 60383-1             | TABE Skill Workbooks: Level A, Data<br>Analysis, Statistics & Probability ©2011                         | 978-0-07-660385-5                            |
|                     | TABE Skill Workbooks: Level A,<br>Measurement, Geometry and Spatial<br>Sense ©2011                      | 978-0-07-660384-8                            |
| 60386-2             | TABE Skill Workbooks: Level A,<br>Numbers, Number Operations,<br>Computation in Context, and Estimation | 978-0-07-660383-1                            |
| -9469–5<br>52755–1  | ©2011<br>TABE Skill Workbooks: Level A,<br>Patterns, Functions, and Algebra                             | 978-0-07-660386-2                            |
| 94300–9             | CONT<br>TABE Skill Workbooks: Level A, Problem<br>Solving and Reasoning ©2011                           | 978-0-07-660387-9                            |
| 97383–9             | The Complete GED ©2002                                                                                  | 978-0-8092-9469-5                            |
| 55/85-0             | The GED Math Problem Solver ©2003                                                                       | 978-0–07–252755–1                            |
| te/ LAN)            | The Math Problem Solver ©2003                                                                           | 978-0-07-294300-9                            |
| 50328-9<br>(sinale) | Top 50 Math Skills for GED Success<br>©2004                                                             | 978-0-07-297383-9                            |
| 50327-2             | Instruction Targeted for TABE Success,                                                                  | 978-0-07-655485-0                            |
| (site)              | MHC Interactive: GED (software)                                                                         | (site/ LAN)<br>978-0-07-250328-9<br>(single) |
|                     |                                                                                                         | 978-0-07-250327-2<br>(site)                  |

November 25, 2019 3:21 PM

|         | 1  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | n  | n² |
|---------|----|---|---|---|---|---|---|---|---|----|----|----|----|----|
| 6 × 6 = | 2  |   |   |   |   |   |   |   |   |    |    |    | 2  |    |
| 6 × 7 = | 3  |   |   |   |   |   |   |   |   |    |    |    | 3  |    |
| 6 × 8 = | 4  |   |   |   |   |   |   |   |   |    |    |    | 4  |    |
| 6 × 9 = | 5  |   |   |   |   |   |   |   |   |    |    |    | 5  |    |
| 7 × 7 = | 6  |   |   | - |   |   |   |   |   |    |    |    | 6  |    |
| 7 × 8 = | 7  |   |   |   |   |   |   |   |   |    |    |    | 7  |    |
| 7 × 9 = | 8  |   |   |   |   |   |   |   |   |    |    |    | 8  |    |
| 8 × 8 = | 9  |   |   |   |   |   |   |   |   |    |    |    | 9  |    |
| 8 × 9 = | 10 |   |   | - |   |   |   |   |   |    |    |    | 10 |    |
| 9 × 9 = | 11 |   |   |   |   |   |   |   |   |    |    |    | 11 |    |
|         | 12 |   |   |   |   |   |   |   |   |    |    |    | 12 |    |

| <ul> <li>Make all the den</li> </ul>                                                                                                         | ominators                                                                 | Addition                                        | Subtraction                                      |                                                                                                  | Multiplication/Division                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| equal to the larg<br>Multiply the num<br>the same factors                                                                                    | est one.<br>nerators by<br>5.                                             | $4\frac{3\times4}{4\times4}$ + $3\frac{13}{16}$ | $5\frac{1}{8} - 2\frac{1}{2} \times \frac{1}{2}$ | <ul> <li>Convert mixed fractions</li> <li>to improper fractions.</li> </ul>                      | $4\frac{3}{8} \div 2\frac{1}{2}$                                                                                                                      |
| <ul> <li>If borrowing, tak<br/>from the whole in<br/>the numerator and<br/>denominator, and<br/>numerator with the</li> </ul>                | te one away<br>number, add<br>nd<br>Id replace the<br>the sum.            |                                                 | $45\frac{19}{8}-2\frac{2}{8}$                    | <ul> <li>If dividing, flip the second fraction.</li> <li>Multiply the numerators</li> </ul>      | $\frac{8\times4+3}{8} \div \frac{2\times2+1}{2}$ $7 \xrightarrow{35}_{4} \frac{35}{8} \times \frac{2}{5} \xrightarrow{1}_{1}$ $5 \xrightarrow{7}_{4}$ |
| <ul> <li>Add/subtract the<br/>and whole numb</li> </ul>                                                                                      | e numerators<br>pers.                                                     | $7\frac{25}{16}$                                | $2\frac{5}{8}$                                   | <ul><li>and denominators.</li><li>Reduce and convert</li></ul>                                   | 4<br>$4\frac{1r3}{7}$ - $1\frac{3}{7}$                                                                                                                |
| <ul> <li>If the resulting fr<br/>improper, add or<br/>whole number, a<br/>numerator the d<br/>between the nur<br/>the denominator</li> </ul> | raction is<br>ne to the<br>and make the<br>ifference<br>merator and<br>r. | 8 <u>9</u><br>16                                | part fraction<br>3<br>whole 5                    | improper to mixed<br>fractions.<br>decimal<br>$\longleftrightarrow \frac{.60}{5.3.0} \Leftarrow$ | $r_{-\frac{4}{3}} - r_{4}$ percentage $r_{60\%}$                                                                                                      |
| lf the is/a                                                                                                                                  | re divisible by                                                           | t                                               | Then so is<br>he number                          | If the is/are divisible by                                                                       | Then so is the number                                                                                                                                 |
| last digit                                                                                                                                   | 2                                                                         | 6 ÷ 2 = 3 🗸 2                                   | $\frac{8,263}{16,526}$ last                      | two digits (4) 72                                                                                | $2 \div 4 = 18  \checkmark  4  \boxed{\begin{array}{c} 12,718}{54,872} \\ \uparrow \uparrow \end{array}}$                                             |
| sum of the digits                                                                                                                            | 3 8+2+                                                                    | 6+4+4 = 24<br>$24 \div 3 = 8 \checkmark 3$      | 27,548<br>)82,644<br>11111                       | ast digit (or is zero)                                                                           | $0  \checkmark  5  \begin{array}{c} 17,868 \\ \hline 89,340 \\ \uparrow \end{array}$                                                                  |

LU3 Aptitude Exam Test Prep

Basic Math Refresher



|                                                                                                                                                                                                                                              |                                                                                                                            |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>1</u><br>2                                                                                                                                                                                                                                     |                                                                                                                            |                                                                                                                                                                                                                                                   |                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                              | _1_                                                                                                                        | <u>1</u><br>4                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _5                                                                                                                                                                                                                                                |                                                                                                                            | <u>3</u><br>1<br>1 <u>7</u>                                                                                                                                                                                                                       |                                                                                                        |
|                                                                                                                                                                                                                                              | 8<br><u>1</u><br>16<br>                                                                                                    | $\begin{array}{c c} \frac{3}{16} \\ \end{array}$             | $ \begin{array}{c c} 8 \\ 5 \\ -6 \\ \hline 16 \\ 16 \\ \hline $ | 9<br>16                                                                                                                                                                                                                                           | <u>11</u><br>16                                                                                                            | $ \begin{array}{c c} 8 \\ \underline{13} \\ 16 \\ 1 \end{array} $                                                                                                                                                                                 | <u>.5</u><br>6                                                                                         |
| 1 / 64<br>1 / 32<br>3 / 64<br>1 / 16<br>5 / 64<br>3 / 32                                                                                                                                                                                     | 0.015625<br>0.03125<br>0.046875<br>0.0625<br>0.078125<br>0.09375                                                           | 17 / 64<br>9 / 32<br>19 / 64<br>5 / 16<br>21 / 64<br>11 / 32 | 0.265625<br>0.28125<br>0.296875<br>0.3125<br>0.328125<br>0.34375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33 / 64<br>17 / 32<br>35 / 64<br>9 / 16<br>37 / 64<br>19 / 32                                                                                                                                                                                     | 0.515625<br>0.53125<br>0.546875<br><b>0.5625</b><br>0.578125<br>0.59375                                                    | 49 / 64<br>25 / 32<br>51 / 64<br>13 / 16<br>53 / 64<br>27 / 32                                                                                                                                                                                    | 0.765625<br>0.78125<br>0.796875<br>0.8125<br>0.828125<br>0.84375                                       |
| 7       /       64         1       /       8         9       /       64         5       /       32         11       /       64         3       /       16         13       /       64         7       /       32         15       /       64 | 0.109375<br><b>0.125</b><br>0.140625<br>0.15625<br>0.171875<br><b>0.1875</b><br>0.203125<br>0.21875<br>0.21875<br>0.234375 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | 0.359375<br>0.390625<br>0.40625<br>0.421875<br>0.4375<br>0.453125<br>0.46875<br>0.484375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39       /       64         5       /       8         41       /       64         21       /       32         43       /       64         11       /       16         45       /       64         23       /       32         47       /       64 | 0.609375<br><b>0.625</b><br>0.640625<br>0.65625<br>0.671875<br><b>0.6875</b><br>0.703125<br>0.71875<br>0.71875<br>0.734375 | 55       /       64         7       /       8         57       /       64         29       /       32         59       /       64         15       /       16         61       /       64         31       /       32         63       /       64 | 0.859375<br><b>0.890625</b><br>0.90625<br>0.921875<br><b>0.9375</b><br>0.953125<br>0.96875<br>0.984375 |
| 1/4<br>November 25, 2019 3:2                                                                                                                                                                                                                 | 0.25                                                                                                                       | 1/2                                                          | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3/4                                                                                                                                                                                                                                               | 0.75                                                                                                                       | 1/1                                                                                                                                                                                                                                               | 1<br><sub>© ммхіх</sub>                                                                                |

### Fractions That Convert to 1, 2 or 3 Decimals

| 1/50                        | 0.02                  | 11/50                  | 0.22                  | 21/50                   | 0.42                               | 31/50                          | 0.62                  | 41/50                          | 0.82                  |
|-----------------------------|-----------------------|------------------------|-----------------------|-------------------------|------------------------------------|--------------------------------|-----------------------|--------------------------------|-----------------------|
| 1/40                        | 0.025                 | 9/40                   | 0.225                 | 17/40                   | 0.425                              | 25/40                          | 0.625                 | 33/40                          | 0.825                 |
| 1/25                        | 0.04                  | 5/20                   | 0.25                  | 11/25                   | $0.44 \\ 0.45 \\ _{0.46} \\ 0.475$ | 13/20                          | 0.65                  | 21/25                          | 0.84                  |
| 1/20                        | 0.05                  | <sup>13/50</sup>       | 0.26                  | 9/20                    |                                    | <sup>33/50</sup>               | 0.66                  | 17/20                          | 0.85                  |
| <sup>3/50</sup>             | 0.06                  | 11/40                  | 0.275                 | <sup>23/50</sup>        |                                    | 27/40                          | 0.675                 | <sup>43/50</sup>               | <sub>0.86</sub>       |
| 3/40                        | 0.075                 | 7/25                   | 0.28                  | 19/40                   |                                    | 17/25                          | 0.68                  | 35/40                          | 0.875                 |
| 1/10                        | <b>0.1</b>            | 3/10                   | 0.3                   | <b>5/10</b>             | <b>0.5</b>                         | 7/10                           | 0.725                 | <b>9/10</b>                    | <b>0.9</b>            |
| 3/25                        | 0.12                  | 13/40                  | 0.325                 | 13/25                   | 0.52                               | 29/40                          | 0.725                 | 23/25                          | 0.92                  |
| 5/40                        | 0.125                 | 17/50                  | 0.34                  | 21/40                   | 0.525                              | 37/50                          | 0.74                  | 37/40                          | 0.925                 |
| 7/50                        | 0.14                  | 7/20                   | 0.35                  | 27/50                   | 0.54                               | 15/20                          | 0.75                  | 47/50                          | 0.94                  |
| <b>3/20</b><br>7/40<br>9/50 | 0.15<br>0.175<br>0.18 | 9/25<br>15/40<br>19/50 | 0.36<br>0.375<br>0.38 | 11/20<br>23/40<br>29/50 | 0.575<br>0.58                      | <b>19/25</b><br>31/40<br>39/50 | 0.76<br>0.775<br>0.78 | <b>19/20</b><br>39/40<br>49/50 | 0.95<br>0.975<br>0.98 |
| 1/5                         | 0.2                   | 2/5                    | 0.4                   | 3/5                     | 0.6                                | 4/5                            | 0.8                   | 50/50                          | ) 1                   |
|                             | Repeat                | ting Decim             | nals                  |                         |                                    |                                |                       |                                |                       |

| 1 / 30 | 0.0333  | 7 / 15  | 0.4666 | 1/9 | 0.1111   | 1 / 11              | 0.0909    |
|--------|---------|---------|--------|-----|----------|---------------------|-----------|
| 1/15   | 0.0666  | 8 / 15  | 0.5333 | 2/0 | 0 $2222$ | 2/11                | 0 1 9 1 9 |
| 1/12   | 0.0833  | 17 / 30 | 0.5666 | 219 | 0.2222   | 2/11                | 0.1010    |
| 2/15   | 0.1333  | 7/12    | 0.5833 | 1/3 | 0.3333   | 3 / 11              | 0.2727    |
| 1/6    | 0.1.(.( | 19 / 30 | 0.6333 | 1/0 | 0 4444   | 4 / 11              | 0.3636    |
| 1/6    | 0.1666  | 11 / 15 | 0.7333 | 4/9 | 0.4444   | -,<br><b>r</b> / 11 |           |
| 7 / 30 | 0.2333  | 23 / 30 | 0.7666 | 5/9 | 0.5555   | 5/11                | 0.4545    |
| 4/15   | 0.2666  | 5/6     | 0.8333 | 2/3 | 0 6666   | 6/11                | 0.5454    |
| F / 10 | 0.5000  | 13 / 15 | 0.8666 |     | 0.0000   | 7/11                | 0.6363    |
| 5/12   | 0.4166  | 11/10   | 0.01(( | 7/9 | 0.7777   | 0/11                | 0.00000   |
|        |         | 11/12   | 0.9166 | 8/9 | 0 8888   | 8/11                | 0.7272    |
|        |         | 14/15   | 0.9333 | 077 | 0.0000   | 9/11                | 0.8181    |
|        |         | 29 / 30 | 0.9666 |     |          |                     | 0.0101    |
|        |         |         |        |     |          | 10/11               | 0.9090    |

Prepared by the Consortium for Worker Education

### Answer Key

### **Irrational Fractions**

| 1 / 17 | 0.058823529411764 | 9 / 17  | 0.529411764705882 |
|--------|-------------------|---------|-------------------|
| 1 / 14 | 0.071428571428571 | 7/13    | 0.538461538461538 |
| 1 / 13 | 0.076923076923076 | 4 / 7   | 0.571428571428571 |
| 2 / 17 | 0.117647058823529 | 10 / 17 | 0.588235294117647 |
| 1 / 7  | 0.142857142857143 | 8 / 13  | 0.615384615384615 |
| 2/13   | 0.153846153846154 | 9 / 14  | 0.642857142857143 |
| 3 / 17 | 0.176470588235294 | 11 / 17 | 0.647058823529412 |
| 3 / 14 | 0.214285714285714 | 9 / 13  | 0.692307692307692 |
| 3 / 13 | 0.230769230769231 | 12 / 17 | 0.705882352941177 |
| 4 / 17 | 0.235294117647059 | 5 / 7   | 0.714285714285714 |
| 2 / 7  | 0.285714285714286 | 13 / 17 | 0.764705882352941 |
| 5/17   | 0.294117647058824 | 10 / 13 | 0.769230769230769 |
| 4 / 13 | 0.307692307692308 | 11 / 14 | 0.785714285714286 |
| 6 / 17 | 0.352941176470588 | 14 / 17 | 0.823529411764706 |
| 5/14   | 0.357142857142857 | 11 / 13 | 0.846153846153846 |
| 5/13   | 0.384615384615385 | 6 / 7   | 0.857142857142857 |
| 7 / 17 | 0.411764705882353 | 15 / 17 | 0.882352941176471 |
| 3 / 7  | 0.428571428571429 | 12 / 13 | 0.923076923076923 |
| 6 / 13 | 0.461538461538462 | 13 / 14 | 0.928571428571429 |
| 8 / 17 | 0.470588235294118 | 16 / 17 | 0.941176470588235 |

#### Consortium for Worker Education

| Naming Numbers                        |
|---------------------------------------|
| millions thousands hundreds tens ones |
|                                       |
| 3 0 4 9 7 7 1 6 3                     |
| tenths hundredths thousandths         |
|                                       |
| 1,459,391                             |
| decimal                               |

| Fable         |                                                                                                                                        |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------|
| $\rightarrow$ | +                                                                                                                                      |
| $\rightarrow$ | _                                                                                                                                      |
| $\rightarrow$ | _                                                                                                                                      |
| $\rightarrow$ | +                                                                                                                                      |
|               | $ \begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array} $ |

### ASMD of Signed Numbers

- Use the Truth Table to multiple/divide two numbers.
- If two signs are not separated by a number, use the Truth Table to simplify the operations.
- +
- If both numbers are the same sign, ADD the numbers, and keep the sign.
- If the numbers have different signs, SUBTRACT the numbers, and keep the sign of the larger number.

5 - 3 = 2 -5 + 3 = -2

6 007

~~ <sup>′</sup> ⊏

5 + 3 = 8-5 - 3 = -8

 $-5 \times -4 = 20$ 

 $-20 \div 4 = -5$ 

-2 - (-5) = -2 + 52 + (-5) = 2 - 5

### ASMD of Decimal Numbers



- Align the numbers so that the decimals form a vertical line. Add/subtract the numbers as if they were whole numbers. Place the decimal in the answer so that it lines up with the other numbers.
- X
- Right justify the two factors and multiply as if they were whole numbers. Move the product's decimal to the left the total number of times it was moved in the factors.
- Move the decimal in the divisor to the end of the number. Move the decimal in the dividend the same number of places, filling with zeros if necessary. Align the decimal in the quotient above the dividend's decimal.

$$\begin{array}{r} 6 & 605 & 2515 \\ + & 14 & 15 & - & 9 & 82 \\ \hline 20 & 953 & 13 & 68 \end{array}$$

$$\begin{array}{r} 1 & 125 & 3 \ left \\ \times & 3 & 14 & 2 \ left \\ \hline 4500 & 1125 \\ \hline 3375 \\ \hline 353250 & 5 \ left \end{array}$$

$$1 & 25 \\ \hline 1 & 25 \\ \hline 1 & 50 & 2 \ right \\ \hline 8 & 4 \\ \hline 125 \\ \hline 1 & 050 & 0 \\ \hline \odot \ MMXiX \end{array}$$

### **Decimal / Fraction Conversions**

#### Changing Decimals to Fractions

To change a decimal to a fraction:

- 1. Write the digits of the decimal as the top number of a fraction.
- 2. Write the decimal's name as the bottom number of the fraction.

*Example:* Change 0.018 to a fraction.

- **1.** Write 18 as the top of the fraction:
- **2.** Since there are three places to the right of the decimal, it's thousandths.
- **3.** Write 1,000 as the bottom number:
- 4. Reduce by dividing 2 into the top and bottom numbers:

| 18      |   |     |
|---------|---|-----|
| 1,000   |   |     |
| 18 ÷2   | _ | 9   |
| 1,000÷2 | _ | 500 |

18

Now try this sample question. Step-by-step solutions to sample questions are at the end of the lesson.

#### Sample Question 1

Change the mixed decimal 2.7 to a fraction.

#### Practice

Change these decimals or mixed decimals to fractions in lowest terms.

| <b>15.</b> 0.1  | <b>19.</b> 0.005 | <b>23.</b> 4.15   |
|-----------------|------------------|-------------------|
| <b>16.</b> 0.03 | <b>20.</b> 0.125 | <b>24.</b> 123.45 |
| <b>17.</b> 0.75 | <b>21.</b> 0.046 |                   |
| <b>18.</b> 0.6  | <b>22.</b> 5.04  |                   |

#### Changing Fractions to Decimals

To change a fraction to a decimal:

- 1. Set up a long division problem to divide the bottom number (the *divisor*) into the top number (the *dividend*)—but don't divide yet!
- 2. Put a decimal point and a few zeros on the right of the divisor.
- 3. Bring the decimal point straight up into the area for the answer (the *quotient*).
- 4. Divide.

### **Decimal / Fraction Conversions**

*Example:* Change  $\frac{3}{4}$  to a decimal.

| 1. Set up the division problem:                                | 4)3                                                     |
|----------------------------------------------------------------|---------------------------------------------------------|
| <b>2.</b> Add a decimal point and 2 zeroes to the divisor (3): | 4)3.00                                                  |
| 3. Bring the decimal point up into the answer:                 | 4) <u>3100</u>                                          |
| 4. Divide:                                                     | $   \begin{array}{r}                                  $ |

### Thus, $\frac{3}{4} = 0.75$ , or 75 hundredths.

#### Practice

Change these fractions to decimals.

| <br><b>25.</b> $\frac{2}{5}$  | <br><b>30.</b> $\frac{7}{8}$                 |
|-------------------------------|----------------------------------------------|
| <br><b>26.</b> $\frac{1}{4}$  | <br><b>31.</b> $\frac{4}{9}$                 |
| <br><b>27.</b> $\frac{7}{10}$ | <br><b>32.</b> 3 <sup>2</sup> / <sub>7</sub> |
| <br><b>28.</b> $\frac{1}{6}$  | <br><b>33.</b> 4 <sup>3</sup> / <sub>4</sub> |
| <br><b>29.</b> $\frac{5}{7}$  | <br><b>34.</b> 2 <sup>1</sup> / <sub>5</sub> |

### **Equivalent Forms Practice Problems**

#### Problem Set 1

### In problems 1 though 3, express the following fractions as decimals. In problems 4 and 5, choose the best answer for the question.

|    | 4                          | 4.   | Which of the following is equivalent |
|----|----------------------------|------|--------------------------------------|
| 1. | 5                          |      | to 0.42?                             |
|    | A. 0.08                    |      | 1                                    |
|    | B. 1.25                    |      | A. 42                                |
|    | C. 0.8                     |      | 42                                   |
|    | D. 0.125                   |      | $\overline{50}$                      |
|    | 3                          |      | B. 50                                |
| 2  | $\frac{5}{8}$              |      | $\frac{21}{70}$                      |
| 21 | A. 0.375                   |      | C. 50                                |
|    | $P_{0} = 0.2\overline{66}$ |      | 42                                   |
|    | B. 0.200                   |      | D. 10                                |
|    | C. 2.66                    |      |                                      |
|    | D. 0.0375                  | 5.   | Which of the following is equivalent |
|    | 17                         | to 0 | .3?                                  |
| 2  | $\frac{17}{20}$            |      |                                      |
| э. | A 0.085                    |      | A. 100                               |
|    | B. 0.1176                  |      | 3                                    |
|    | C. 1.176                   |      | в 50                                 |
|    | D. 0.85                    |      | 3                                    |
|    |                            |      | $\frac{1}{10}$                       |
|    |                            |      | $C_{1}$                              |
|    |                            |      | <u>5</u>                             |
|    |                            |      | D. 5                                 |

#### For problems 6 through 10, express the following numbers as a percentage.

|    | 7                                           |     |                                                       |
|----|---------------------------------------------|-----|-------------------------------------------------------|
| 6. | 10<br>A. 7%<br>B. 0.7%<br>C. 70%<br>D. 700% | 8.  | 0.28<br>A. 2.8%<br>B. 280%<br>C28%<br>D. 28%          |
| 7. | 27<br>50<br>A. 27%<br>B. 0.27%<br>C. 5.4%   | 9.  | 0.6<br>A. 6%<br>B. 0.06%<br>C. 60%<br>D. 0.6%         |
|    | D. 54%                                      | 10. | 0.347<br>A. 34.7%<br>B. 0.347%<br>C. 3.47%<br>D. 347% |

### **Equivalent Form Practice Problems**

Problem Set 1

#### In questions 11-15, change the percentage into an equivalent decimal or fraction.

| 11. | 81%<br>A. 81<br>B. 8.1<br>C. 0.81<br>D. 0.081                                   | 15. | 8%<br>A. $\frac{2}{25}$<br>B. $\frac{1}{12}$<br>4                                                                                                                        |
|-----|---------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12. | A. $\frac{3}{500}$<br>B. $\frac{3}{50}$<br>C. $\frac{3}{5}$<br>C. $\frac{3}{5}$ | 16. | C. $\frac{5}{25}$<br>D. $\frac{1}{25}$<br>Which is the least number?<br>A. 0.6<br>B. 0.1<br>C. 0.06<br>D. 0.01                                                           |
| 13. | 500%<br>A. 0.5<br>B. 0.05<br>C. 5<br>D. 50                                      | 17. | Which is the greatest number?<br>A. 1.47<br>B. 2.78<br>C. 0 .278<br>D. 14.7                                                                                              |
| 14. | 11%<br>A. 1.1<br>B. 0.11<br>C. 11<br>D. 0.011                                   | 18. | Put these in order from least to<br>greatest.<br>A. 0.365, 0.3065, 0.37, 3.7<br>B. 3.7, 0.37, 0.365, 0.3065<br>C. 0.3065, 0.365, 0.37, 3.7<br>D. 3.7, 0.37, .3065, 0.365 |
|     |                                                                                 | 19. | Put these in order from greatest to<br>least.<br>A. 0.01, 0.1, 1, 0.1256<br>B. 1, 0.1256, 0.1, 0.01<br>C. 0.1256, 0.1, 1, 0.01<br>D. 1, 0.1, 0.1256, 0.01                |
|     |                                                                                 | 20. | Which of these is the least number?<br>A. 50%<br>B. 5<br>C. 50<br>D. 0.6                                                                                                 |

### **Equivalent Form Practice Problems**

#### Problem Set 2

### For problems 1 through 3, express the fractions as decimals. For questions 4 and 5, choose the best answers.

|    | <u>3</u>             | <b>4.</b> Whic | h of the following is equivalent |
|----|----------------------|----------------|----------------------------------|
| 1. | 5                    | to 0.          | 68?                              |
|    | A. 0.6               |                | <u>68</u>                        |
|    | B. 0.06              | Α.             | 10                               |
|    | C. 1.66              |                | <u>16</u>                        |
|    |                      | В.             | 25                               |
|    | D. 0.66              |                | 1                                |
|    | -                    | C.             | 68                               |
| _  | $\frac{5}{2}$        |                | 34                               |
| 2. | 8                    | D              | $\frac{1}{50}$                   |
|    | A. 0.0625            | D.             | 50                               |
|    | B. 0.625             |                |                                  |
|    | C. 0.16              | 5. Expr        | ess 0.2 as a fraction.           |
|    | D. 1.6               |                | 2                                |
|    |                      | Α.             | 100                              |
|    | 9                    |                | 2                                |
| 3. | $\overline{20}$      | В.             | 50                               |
|    | A. 2.22              |                | 2                                |
|    | B. 0.45              | C.             | 10                               |
|    | C. 0.045             |                | 1                                |
|    | D. $0.\overline{22}$ | D.             | 50                               |

#### For problems 6 through 10, express the numbers as a percentage.

|    | 3               |    |          |
|----|-----------------|----|----------|
| 6. | $\overline{10}$ |    |          |
|    | A. 3%           |    | 31       |
|    | B. 30%          | 7. | 50       |
|    | C. 0.3%         |    | A. 62%   |
|    | D. 0.003%       |    | B. 6.2%  |
|    |                 |    | C. 31%   |
|    |                 |    | D. 0.31% |
|    |                 |    |          |

### **Equivalent Form Practice Problems**

### Problem Set 2

|    |          | 10. | 0.078     |  |
|----|----------|-----|-----------|--|
|    |          |     | A. 78%    |  |
|    |          |     | B. 0.78%  |  |
| 8. | 0.59     |     | C. 7.8%   |  |
|    | A. 0.59% |     | D. 0.078% |  |
|    | B. 59%   |     |           |  |
|    | C. 5.9%  |     |           |  |
|    | D. 590%  |     |           |  |
| 9. | 0.9      |     |           |  |
|    | A. 90%   |     |           |  |
|    | B. 9%    |     |           |  |
|    | C. 0.9%  |     |           |  |

In questions 11-15, change the percentage into an equivalent decimal or fraction.

| A. $\frac{18}{25}$ B. $\frac{9}{12}$ C. $\frac{9}{25}$ D. $\frac{18}{250}$ 12. $7\%$ A. $0.07$ B. $0.7$ C. $7$ D. $0.007$ 13. $320\%$ A. $32$ B. $0.32$ C. $3.2$ D. $0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11. | 72%               |    |    | D. 0.032           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------|----|----|--------------------|
| A. $25$ 9B. $\frac{9}{12}$ 12. $\frac{9}{25}$ $\frac{18}{250}$ 12. $7\%$ A. $0.07$ B. $0.7$ C. 7D. $0.007$ 13. $320\%$ A. $32$ B. $0.32$ C. $3.2$ D. $0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | $\frac{18}{25}$   |    |    |                    |
| B. $\frac{9}{12}$ 14. $13\%$ C. $\frac{9}{25}$ A.13D. $\frac{18}{250}$ C.13.12. $7\%$ C.7A.0.07A. $\frac{3}{50}$ B.0.7C.7C.7D.0.00713.320%C. $\frac{3}{5}$ A.32D. $\frac{3}{25}$ D.0.09D. $\frac{3}{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | A. <sup>25</sup>  |    |    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | в. <u>9</u><br>12 | 14 | ١. | 13%                |
| C. $\frac{13}{250}$<br><b>12.</b> $7\%$<br>A. 0.07<br>B. 0.7<br>C. 7<br>D. 0.007<br><b>13.</b> $320\%$<br>A. $32$<br>B. 0.32<br>C. 1.3<br>D. 0.013<br><b>15.</b> $6\%$<br><b>15.</b> $6\%$<br><b>15.</b> $6\%$<br><b>15.</b> $6\%$<br><b>15.</b> $6\%$<br><b>16.</b> $\frac{3}{50}$<br><b>17.</b> $\frac{3}{50}$<br><b>17.</b> $\frac{3}{50}$<br><b>17.</b> $\frac{3}{50}$<br><b>17.</b> $\frac{3}{5}$<br><b>17.</b> $\frac{3}{5}$ |     | $\frac{9}{25}$    |    |    | A. 13<br>B. 0.13   |
| D. 250<br><b>12.</b> $7\%$<br>A. 0.07<br>B. 0.7<br>C. 7<br>D. 0.007<br><b>13.</b> $320\%$<br>A. $32$<br>B. 0.32<br>C. 3.2<br>D. 0.09<br><b>15.</b> $6\%$<br><b>15.</b> $6\%$<br><b>15.</b> $6\%$<br><b>15.</b> $6\%$<br><b>15.</b> $6\%$<br><b>15.</b> $6\%$<br><b>15.</b> $6\%$<br><b>15.</b> $6\%$<br><b>15.</b> $6\%$<br><b>15.</b> $6\%$<br><b>16.</b> $\frac{3}{50}$<br><b>17.</b> $\frac{3}{5}$<br>D. $\frac{3}{25}$<br>D. $\frac{3}{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | $\frac{18}{1}$    |    |    | C. 1.3<br>D. 0.013 |
| <b>12.</b> $7\%$ A. 0.07         A. 0.07       B. 0.7         B. 0.7       C. 7         D. 0.007       B. $\frac{2}{12}$ <b>13.</b> $320\%$ C. $\frac{3}{5}$ A. 32       D. 0.32         C. 3.2       D. 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | D. 250            | 15 | 5. | 6%                 |
| A. $0.07$ A. $\overline{50}$ B. $0.7$ B. $0.7$ C. 7       D. $0.007$ <b>13.</b> $320\%$ C. $\frac{3}{5}$ A. $32$ D. $0.32$ C. $3.2$ D. $0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12. | 7%                |    |    | 3                  |
| B. 0.7<br>C. 7<br>D. 0.007<br>B. $\frac{2}{12}$<br>B. $\frac{3}{5}$<br>C. $\frac{3}{5}$<br>A. 32<br>B. 0.32<br>C. 3.2<br>D. 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | A. 0.07           |    |    | A. 50              |
| C. 7<br>D. 0.007<br>B. $\overline{12}$<br>B. $\overline{12}$<br>C. $\frac{3}{5}$<br>C. $\frac{3}{5}$<br>D. 0.32<br>C. 3.2<br>D. 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | B. 0.7            |    |    | 2                  |
| D. 0.007<br><b>13.</b> $320\%$<br>A. $32$<br>B. 0.32<br>C. $3.2$<br>D. 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | C. 7              |    |    | в. <u>12</u>       |
| <b>13.</b> $320\%$ C. $5$ A. $32$ $\frac{3}{25}$ B. $0.32$ D. $\frac{2}{25}$ C. $3.2$ D. $0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | D. 0.007          |    |    | <u>3</u>           |
| A. 32<br>B. 0.32<br>C. 3.2<br>D. 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13. | 320%              |    |    | C. 5               |
| C. 3.2<br>D. 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | A. 32<br>B. 0.32  |    |    | D. $\frac{3}{25}$  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | C. 3.2<br>D. 0.09 |    |    |                    |

### Equivalent FormsPractice Problems

#### Problem Set 2

- 16. Which of these is the greatest number?A. 0.205B. 0.0205
  - C. 0.0250

  - D. 0.250
- **17.** Which is the least number?
  - A. 0.03
  - B. 0.1
  - C. 0.3
  - D. 0.01
- 18. Which is the greatest number?A. 0.47
  - B. 0.047

- C. 0.0475 D. 0.468
- **19.** Arrange these in order from greatest to least.
  - A. 0.04, 1.3, 0.18, 0.388
    B. 0.18, 1.3, 0.388, 0.04
    C. 0.388, 0.18, 1.3, 0.04
    D. 1.3, 0.388, 0.18, 0.04
- 20. Arrange these in order from least to greatest.A. 0.201, 0.19, 1.2, 0.21
  - B. 0.19, 0.201, 0.21, 1.2 C. 1.2, 0.19, 0.201, 0.19 D. 0.21, 1.2, 0.201, 0.19

### **Convert Fractions to Decimals**

The first number goes inside the Division Box

| 1.  | 3/32 =                          | 11. | 8⁄11 =             |
|-----|---------------------------------|-----|--------------------|
| 2.  | <sup>41</sup> / <sub>64</sub> = | 12. | <sup>8</sup> ⁄9 =  |
| 3.  | 7/32 =                          | 13. | 4⁄15 =             |
| 4.  | 1⁄64 =                          | 14. | 3⁄11 =             |
| 5.  | <sup>61</sup> / <sub>64</sub> = | 15. | 5⁄6 =              |
| 6.  | <sup>49</sup> / <sub>50</sub> = | 16. | 1⁄14 =             |
| 7.  | <sup>1</sup> / <sub>10</sub> =  | 17. | 5⁄7 =              |
| 8.  | <sup>27</sup> / <sub>40</sub> = | 18. | <sup>5</sup> ⁄14 = |
| 9.  | 1/10 =                          | 19. | <sup>3</sup> ⁄7 =  |
| 10. | <sup>21</sup> / <sub>40</sub> = | 20. | <sup>5</sup> ⁄7 =  |

### **Convert Decimals to Fractions**

#### Look for Patterns

| 1. | 0.46875 =  | 11. | 0.65 =  |
|----|------------|-----|---------|
| 2. | 0.890625 = | 12. | 0.825 = |
| 3. | 0.609375 = | 13. | 0.525 = |
| 4. | 0.375 =    | 14. | 0.04 =  |

- **5.** 0.6875 = **15.** 0.675 =
- **16.** 1.566666667 = **6.** 0.984375=
- **7.** 0.703125 = **17.** 0.88888889 =
- **8.** 0.796875 = **18.** 0.77777778 =
- **19.** 1.566666667 = **9.** 0.65625 =
- **10.** 0.546875 = **20.** 0.133333333 =

### ASMD of Decimals

- **11.** 3.294 × 1.71 = **1.** 4.06 + 2.31 =
- **2.** 2.2 + 4.97 = **12.** 2.5 × 1.02 =
- **3.** 3.42 + 1. = **13.** 2.9 × 1.4 =
- **4.** 2.973 + 2.5 = **14.** 2.37 × 2.12 =
- **5.** 3.8 + 2.83 = **15.** 4.894 × 2. =
- **16**. 1.667 ÷ 1.4 = **6.** 4.31 - 1.71 =
- **7.** 4.154 2.7 = **17.** 2.412 ÷ 1.606 =
- **18.** 3.3 ÷ 1.667 = **8.** 3.915 - 1.65 =
- **9.** 3.25 1.302 = **19.** 3.915 ÷ 1.8 =
- **10.** 3.7 1.11 = **20.** 1.343 ÷ 2. =

### Radicals

# When you think of a square, you probably think of a box-shaped figure with four equal sides like the one shown here. As you'll see in this lesson, that's a good way to think about squares *and* square roots.



#### FINDING SQUARES

A *square* of a number is just the number multiplied by itself. So the square of 4 is  $4 \times 4 = 16$ . How does this relate to a square-shaped figure? The area of a square is the amount of space a square takes up. To calculate the area of a square, you multiply the length of one side by itself. That is why the area of a square is sometimes written as *s* squared, or  $s^2$ . Any time a number is written with a 2 raised after it, it means to multiply the number by itself, or to *square* the number.

#### **Example:** What is the square of 30?

To find the square of a number, multiply it by itself. Thus, the square of 30 is  $30 \times 30$ , or 900.

#### **Example:** Find 9<sup>2</sup>.

When a number is followed by a raised 2, you should square it. Thus,  $9^2 = 9 \times 9 = 81$ .

#### **FINDING SQUARE ROOTS**

To find a square root of a number you have to think backwards. You will be given the area of an entire square. The answer to the problem, or *square root*, is the length of only one side of the square. That is, the square root of a number is a number that when multiplied by itself equals the number given in the problem. Keep reading. It's not as tricky as it sounds.

You may have seen this symbol before:  $\sqrt{\phantom{0}}$ . This is the symbol for a square root. When it is written over a number, you are being asked to find the square root of that number.

#### **Example:** What is $\sqrt{25}$ ?

The problem is asking you to calculate the square root of 25. Ask yourself what number multiplied by itself equals 25. If you have memorized the list of common squares, this problem is not very hard. Even if you haven't learned the list of common squares yet, though, you can figure this problem out:  $5 \times 5$  = 25. So the square root of 25 is 5.

LU3 Aptitude Exam Test Prep

Consortium for Worker Education

Basic Math Refresher

### Radicals

Basic Math Review

| Number | Square | Calculation  | Number | Square | Calculation    |
|--------|--------|--------------|--------|--------|----------------|
| 1      |        | 1 × 1        | 11     |        | 11 × 11        |
| 2      |        | 2 × 2        | 12     |        | 12 × 12        |
| 3      |        | 3 × 3        | 13     |        | 13 × 13        |
| 4      |        | $4 \times 4$ | 14     |        | $14 \times 14$ |
| 5      |        | 5 × 5        | 15     |        | 15 × 15        |
| 6      |        | 6 × 6        | 16     |        | 16 × 16        |
| 7      |        | 7 × 7        | 17     |        | 17 × 17        |
| 8      |        | 8 × 8        | 18     |        | $18 \times 18$ |
| 9      |        | 9 × 9        | 19     |        | 19 ×1 9        |
| 10     |        | 10 × 10      | 20     |        | 20 × 20        |

| Number | Square | Calculation | Number | Square | Calculation |
|--------|--------|-------------|--------|--------|-------------|
| 21     |        | 21 × 21     | 25     |        | _ 25 × 25   |
| 22     |        | _ 22 × 22   | 26     |        | _ 26 ×26    |
| 23     |        | _ 23 × 23   | 27     |        | _ 27 × 27   |
| 24     |        | _ 24 × 24   | 28     |        | _ 28 × 28   |

AAKING TIP

AKING TIP

Basic Math Review

If you aren't sure what the square root of a given square is, make a guess. Then multiply the number by itself. If it's not the correct square root, at least now you can make a better guess the second time!

In this lesson, you are working only with whole numbers. However, sometimes math problems will ask you to calculate square roots that are not whole numbers. Read the question carefully. You might be asked to round your answer to a certain place. In other cases, you might be able to use a calculator to solve the problem.

EXAMPLE: What is  $\sqrt{45}$ ?

The problem is asking you what number equals 45 when multiplied by itself. You know that  $6^2 = 36$  and  $7^2 = 49$ . Thus, the square root of 45 is a number between 6 and 7. You can find a more precise answer using a calculator.

### Practice

Solve each problem.

| 1. | 2 <sup>2</sup>        | 9.  | <b>3</b> <sup>2</sup>  | 16. √ <del>64</del>  | 22. √ <u>625</u>   |
|----|-----------------------|-----|------------------------|----------------------|--------------------|
| 2. | <b>9</b> <sup>2</sup> | 10. | 13 <sup>2</sup>        | 17. √ <del>36</del>  | 23. √ <u>256</u>   |
| 3. | 16 <sup>2</sup>       | 11. | 7 <sup>2</sup>         | 18. √ <del>4</del> 9 | 24. √ <u>1,600</u> |
| 4. | 12 <sup>2</sup>       | 12. | 26 <sup>2</sup>        | 19. √81              | 25. √ <u>441</u>   |
| 5. | 6 <sup>2</sup>        | 13. | 35 <sup>2</sup>        | 20. √361             | 26. √ <del>0</del> |
| 6. | 5 <sup>2</sup>        | 14. | 25 <sup>2</sup>        | 21. √ <u>529</u>     | 27. √3,600         |
| 7. | 15 <sup>2</sup>       | 15. | <b>91</b> <sup>2</sup> |                      |                    |

8. 8<sup>2</sup>

### Find the Square or Square Root of the Number

| 1.  | 27 <sup>2</sup> | <b>11</b> .√529 |
|-----|-----------------|-----------------|
| 2.  | 15 <sup>2</sup> | <b>12</b> .√81  |
| 3.  | 3 <sup>2</sup>  | <b>13</b> .√49  |
| 4.  | 5 <sup>2</sup>  | <b>14</b> .√900 |
| 5.  | 30 <sup>2</sup> | <b>15</b> .√49  |
| 6.  | 2 <sup>2</sup>  | <b>16</b> .√64  |
| 7.  | 3 <sup>2</sup>  | <b>17</b> . √1  |
| 8.  | 25 <sup>2</sup> | <b>18</b> .√576 |
| 9.  | 20 <sup>2</sup> | <b>19</b> .√784 |
| 10. | 3 <sup>2</sup>  | <b>20</b> .√81  |

### Signed Numbers

Basic Math Review

#### Positive and Negative Numbers

Positive and negative numbers, also called *signed* numbers, can be visualized as points along the number line:



Numbers to the left of 0 are *negative* and those to the right are *positive*. Zero is neither negative nor positive. If a number is written without a sign, it is assumed to be *positive*. On the negative side of the number line, numbers with bigger values are actually smaller. For example, -5 is *less than* -2. You come into contact with negative numbers more often than you might think; for example, very cold temperatures are recorded as negative numbers.

As you move to the right along the number line, the numbers get larger. Mathematically, to indicate that one number, say 4, is *greater than* another number, say -2, the *greater than* sign ">" is used:

4 > -2

Conversely, to say that -2 is *less than* 4, we use the *less than* sign, "<":

-2 < 4

#### **Arithmetic with Positive and Negative Numbers**

The following table illustrates the rules for doing arithmetic with signed numbers. Notice that when a negative number follows an operation (as it does in the second example), it is enclosed in parentheses to avoid confusion.

| RULE                                                                                                                                        | EXAMPLE                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| ADDITION                                                                                                                                    |                                                    |
| If both numbers have the same sign, just add them. The answer has the same sign as the numbers being added.                                 | 3 + 5 = 8<br>-3 + (-5) = -8                        |
| If both numbers have different signs, subtract the smaller<br>number from the larger. The answer has the same sign as<br>the larger number. | -3 + 5 = 2<br>3 + (-5) = -2                        |
| If both numbers are the same but have opposite signs, the sum is zero.                                                                      | 3 + (-3) = 0                                       |
| SUBTRACTION                                                                                                                                 |                                                    |
| To subtract one number from another, change the sign of the number to be subtracted and then add as above.                                  | 3-5=3+(-5)=-2<br>-3-5=-3+(-5)=-8<br>-3-(-5)=-3+5=2 |

### Signed Numbers

| Basic Math | Review |
|------------|--------|
|------------|--------|

| RULE                                                                                                                  | EXAMPLE                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| MULTIPLICATION                                                                                                        |                                                                                            |
| Multiply the numbers together. If both numbers have the same sign, the answer is positive; otherwise, it is negative. | $3 \times 5 = 15$<br>$-3 \times (-5) = 15$<br>$-3 \times 5 = -15$<br>$3 \times (-5) = -15$ |
| If one number is zero, the answer is zero.                                                                            | $3 \times 0 = 0$                                                                           |
| Divide the numbers. If both numbers have the same sign,<br>the answer is positive; otherwise, it is negative.         | $15 \div 3 = 5$<br>-15 ÷ (-3) = 5<br>15 ÷ (-3) = -5<br>-15 ÷ 3 = -5                        |
| If the top number is zero, the answer is zero.                                                                        | $0 \div 3 = 0$                                                                             |

#### Practice

Jse the previous table to help you solve these problems with signed numbers.

| <br><b>1.</b> $2 + (-3) = ?$       | <br><b>6.</b> $-8 \div 4 = ?$                                                 |
|------------------------------------|-------------------------------------------------------------------------------|
| <br><b>2.</b> $-2 + (-3) = ?$      | <br><b>7.</b> 9 ÷ $(-1.2) = ?$                                                |
| <br><b>3.</b> $4 - (-3) = ?$       | <br><b>8.</b> $-\frac{3}{5} - 1 = ?$                                          |
| <br><b>4.</b> -8.5 - (-1.7) = ?    | <br><b>9.</b> $\frac{5}{7} \times (-\frac{7}{10}) = ?$                        |
| <br><b>5.</b> $-3 \times (-5) = ?$ | <br><b>10.</b> $\left(-\frac{8}{3}\right) \div \left(-\frac{2}{9}\right) = ?$ |

# Multiplying & Dividing Signed Numbers

| 1. | -4 · 4 =  | A. 16<br>B16<br>C. 1<br>D1<br>E. None of the above                            | 7.  | 20 · -2 =         | A. 40<br>B. 10<br>C10<br>D40<br>E. None of the above                        |
|----|-----------|-------------------------------------------------------------------------------|-----|-------------------|-----------------------------------------------------------------------------|
| 2. | -5·-5 =   | A25<br>B. 30<br>C30<br>D. 25<br>E. None of the above                          | 8.  | -6 · -7 · -1 =    | A. 42<br>B42<br>C13<br>D. 13<br>E. None of the above                        |
| 3. | -9 · -3 = | A27<br>B. $\frac{1}{3}$<br>C. 27<br>D. $-\frac{1}{3}$<br>E. None of the above | 9.  | -8 ÷ 4 =          | A. 2<br>B. $\frac{1}{2}$<br>C. $-\frac{1}{2}$<br>D2<br>E. None of the above |
| 4. | 8 · -4 =  | A. 32<br>B. 2<br>C32<br>D2<br>E. None of the above                            | 10. | 32 ÷ -8 =         | A4<br>B. 4<br>C. $\frac{1}{4}$<br>D. $-\frac{1}{4}$                         |
| 5. | -2 · 12 = | A. $-24$<br>B. $\frac{1}{6}$<br>C. 6<br>D. 24<br>E. None of the above         | 11. | $\frac{-56}{8} =$ | E. None of the above<br>A. 7<br>B. $\frac{1}{7}$                            |
| 6. | (-7)(-7)= | A. 49<br>B.1<br>C1<br>D49<br>E. None of the above                             |     |                   | C7<br>D. $-\frac{1}{7}$<br>E. None of the above                             |

### Multiplying & Dividing Signed Numbers

#### Set 1

12. 
$$-25 \div 5 =$$
 A.  $\frac{1}{5}$   
B.  $-\frac{1}{5}$   
C. 5  
D.  $-5$   
E. None of the above

13. 
$$\frac{45}{-9} =$$
 A.  $\frac{1}{5}$   
B.  $-\frac{1}{5}$   
C. 5  
D. 6  
E. None of the above

14. 
$$2 \div -3 =$$
 A.  $-1\frac{1}{3}$   
B.  $\frac{2}{3}$   
C.  $-\frac{2}{3}$   
D.  $1\frac{1}{3}$   
E. None of the above

15. 
$$\frac{-36}{-6} =$$
 A. 6  
B. -6  
C.  $\frac{1}{6}$   
D.  $-\frac{1}{6}$   
E. None of the above

16. 
$$-48 \div -6 =$$
 A.  $-8$   
B. 8  
C.  $\frac{1}{8}$   
D.  $-\frac{1}{8}$   
E. None of the above  
*November 25, 2019 3:21 PM*

17. In electrical switching, a circuit is either ON or OFF. If ON is represented by (+), OFF is represented by (-) and a push of a switch is (-), will the condition of the switch be ON or OFF if the switch begins ON and the switch is pushed 5 times?

A. ON B. OFF

18. What will be the condition of the switch if it begins OFF and the switch is pushed 6 times?

A. ON B. OFF

19. What number must -8 be multiplied by to produce a product of 64?

| A. 8 | B8    |
|------|-------|
| C. 7 | D. –7 |

20. If a stock dropped 0.65 for 5 days, what was the resulting loss?

| A\$3.25 | B\$2.25 |
|---------|---------|
| C\$3.35 | D\$4.24 |

```
- 27 -
```

# Multiplying & Dividing Signed Numbers Set 2

| <b>1.</b> −3 · 3 =   | A. 9<br>B. 1<br>C9<br>D1<br>E. None of the above           | <b>7.</b> 30 · −3 =          | A. 10<br>B90<br>C10<br>D. 90<br>E. None of the above   |
|----------------------|------------------------------------------------------------|------------------------------|--------------------------------------------------------|
| <b>2.</b> -6 · -6 =  | A. −36<br>B. 36<br>C. 1<br>D. −1<br>E. None of the above   | <b>8.</b> -1 · -8 · -6 ·     | = A. 54<br>B. 48<br>C48<br>D54<br>E. None of the above |
| <b>3.</b> (-8)(-7) = | A56<br>B. 48<br>C48<br>D. 56<br>E. None of the above       | <b>9.</b> −10 ÷ 5 =          | A. $\frac{1}{2}$<br>B. $-\frac{1}{2}$<br>C. 2<br>D2    |
| <b>4.</b> 7 · −5 =   | A. 35<br>B. −25<br>C. 25<br>D. −35<br>E. None of the above | <b>10.</b> 42 ÷ −6 =         | E. None of the above<br>A7<br>B. 7<br>C. 6<br>D6       |
| <b>5.</b> −3 · 15 =  | A. −45<br>B. 45<br>C. 35<br>D. −35<br>E. None of the above | <b>11.</b> $\frac{-72}{9} =$ | E. None of the above<br>A. 8<br>B. $\frac{1}{-}$       |
| <b>6.</b> (-8)(-8) = | A. −64<br>B. 64<br>C. 1<br>D. −1<br>E. None of the above   |                              | 8<br>C8<br>D. $-\frac{1}{8}$<br>E. None of the above   |

# Multiplying & Dividing Signed Numbers Set 2

| <b>12.</b> −36 ÷ 6 =          | A. $\frac{1}{6}$<br>B. 6<br>C6<br>D. $-\frac{1}{6}$<br>E. None of the above | <b>16.</b> 54 ÷ -6 = A. 9<br>B. 8<br>C. $\frac{1}{9}$<br>D. $-\frac{1}{8}$<br>E. None of the above                                                                                                                                      |
|-------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>13.</b> $\frac{-42}{-7}$ = | A. $\frac{1}{6}$<br>B6                                                      | In each of the following problems,<br>represent each loss as a negative<br>number and a gain as a positive<br>number.                                                                                                                   |
|                               | C. 6<br>D $\frac{1}{6}$                                                     | <b>17.</b> Susan lost 15 pounds over a period of five weeks. What was her average weekly weight loss?                                                                                                                                   |
|                               | E. None of the above                                                        | A. 3 B3<br>C. 5 D5                                                                                                                                                                                                                      |
| <b>14.</b> -4 ÷ 12            | A. $-\frac{1}{3}$<br>B. $1\frac{1}{3}$                                      | <b>18.</b> The temperature dropped 25 degrees in the last 5 hours. What was the average drop in temperature each hour?                                                                                                                  |
|                               | C. 3<br>D. –3<br>E. None of the above                                       | A. 5 B. – 5<br>C. 25 D. – 25                                                                                                                                                                                                            |
| <b>15.</b> $\frac{-60}{-5}$ = | A12<br>B. 12<br>C. $\frac{1}{12}$                                           | <ul> <li>19. John owns shares of a public utility stock. The value of his stock dropped \$500 in value last year. If each share of stock dropped \$1.25, how many shares does John own?</li> <li>A. 200 B200<br/>C. 400 D400</li> </ul> |
|                               | D. $-\frac{1}{12}$<br>E. None of the above                                  | <ul> <li>20. If a negative number is multiplied by another negative an odd (1,3,5,) number of times, the product will always be</li> <li>A. Positive</li> <li>B. Negative</li> </ul>                                                    |

### Adding & Subtracting Signed Numbers

Set 1

| 1. | -8 + -3 =  | A5<br>B11<br>C. 5<br>D. 11<br>E. None of the above       | <b>7.</b> 9 – 4 + –3 =  | A. 8<br>B –2<br>C. 2<br>D. –8<br>E. None of the above |
|----|------------|----------------------------------------------------------|-------------------------|-------------------------------------------------------|
| 2. | 4 + -6 =   | A2<br>B10<br>C. 10<br>D. 2<br>E. None of the above       | <b>8</b> .  -6+2  =     | A. 8<br>B. 4<br>C8<br>D4<br>E. None of the above      |
| 3. | -5 + 12 =  | A7<br>B17<br>C. 17<br>D. 7<br>E. None of the above       | <b>9.</b> -10 - (-4) =  | A. 6<br>B. 14<br>C14<br>D6<br>E. None of the above    |
| 4. | -15 + -8 = | A. –23<br>B. –7<br>C. 23<br>D. 7<br>E. None of the above | <b>10.</b> 7 – (–12) =  | A19<br>B. 5<br>C5<br>D. 20<br>E. None of the above    |
| 5. | -23 + 6 =  | A. 17<br>B17<br>C29<br>D. 29<br>E. None of the above     | <b>11.</b> –3 – 24      | A27<br>B. 27<br>C. 21<br>D21<br>E. None of the above  |
| 6. | 2 + -18 =  | A20<br>B16<br>C. 16<br>D. 20<br>E. None of the above     | <b>12.</b> –16 – (–8) = | A. 24<br>B24<br>C. 8<br>D8<br>E. None of the above    |

### Adding & Subtracting Signed Numbers

Set 1

| <b>13.</b> 18 - (-2) = | A. –20               |
|------------------------|----------------------|
|                        | B16                  |
|                        | C. 16                |
|                        | D. 21                |
|                        | E. None of the above |
|                        |                      |
|                        |                      |

**14.** 
$$9 - (-14) = A. -23$$
  
B. 23  
C. -5  
D. 5  
E. None of the above

| <b>16.</b> –43 | A. 55                |
|----------------|----------------------|
| - <u>12</u>    | B55                  |
|                | C. 31                |
|                | D31                  |
|                | E. None of the above |

**17.** Auto technicians doing front-end alignment on an automobile must calculate the included angle. It is the sum of the steering axis inclination and the camber angle. If the steering angle inclination is 4  $1/2^{\circ}$  and the camber angle is  $-1/4^{\circ}$ , what is the included angle?

| A. 4°     | B. 4 1/4° |
|-----------|-----------|
| C. 3 1/4° | D. 4 3/4° |

**18.** What is the included angel for a car having a steering axis inclination of 6  $1/2^{\circ}$  and a camber angle of  $-1/2^{\circ}$ ?

| A. 6°     | B. 7°     |
|-----------|-----------|
| C. 6 1/2° | D. 7 1/2° |

19. Air temperature is measured as above or below zero. Temperatures above zero are positive numbers and below zero are negative numbers. If the temperature at 5 AM is -5 °F. and it rises 10° F by 11 AM, what is the temperature then?

| A. | 15° | B. 5°. |   |
|----|-----|--------|---|
| C. | 16° | D59    | כ |

**20.** If the temperature is 15 degrees at 5 PM and drops 18 degrees, what is the temperature then?

| A. –23° | B. −3°  |
|---------|---------|
| C. 3°   | D. –15° |

### Adding & Subtracting Signed Numbers

### Set 2

| 1. | -7 + -4 =  | A. 11<br>B3<br>C11<br>D. 3<br>E. None of the above         | <b>7.</b> 10 – 5 + –4 = | <ul> <li>A. −1</li> <li>B −9</li> <li>C. 9</li> <li>D. −11</li> <li>E. None of the above</li> </ul> |
|----|------------|------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------|
| 2. | 5 + -7 =   | A. 2<br>B2<br>C12<br>D. 12<br>E. None of the above         | <b>8.</b>   -7 + 4   =  | A. 11<br>B. 3<br>C3<br>D11<br>E. None of the above                                                  |
| 3. | -6 + 13 =  | A. 7<br>B. –7<br>C. 19<br>D. –19<br>E. None of the above   | <b>9.</b> -11 - (-5) =  | A6<br>B. 6<br>C. 16<br>D16<br>E. None of the above                                                  |
| 4. | -9 + -11 = | A. 20<br>B. 2<br>C2<br>D20<br>E. None of the above         | <b>10.</b> 9 - (-14) =  | A23<br>B. 5<br>C5<br>D. 23<br>E. None of the above                                                  |
| 5. | -23 + 6 =  | A. 17<br>B. –17<br>C. 29<br>D. –29<br>E. None of the above | <b>11.</b> 22 - (-4) =  | A26<br>B. 18<br>C. 26<br>D18<br>E. None of the above                                                |
| 6. | 4 + -21 =  | A. −17<br>B. 17<br>C. −26<br>D. 26<br>E. None of the above | <b>12.</b> –16 – (–7) = | A. 9<br>B. 23<br>C9<br>D23<br>E. None of the above                                                  |
## Adding & Subtracting Signed Numbers

Set 2

| <b>13.</b> 19 - (-3) =                                                                                                                                | A. 22<br>B. 16<br>C16<br>D22<br>E. None of the above                                                                                                             | 18. | Stock market<br>with changes<br>reported in p<br>numbers dep<br>price of the s<br>If Home Dep<br>with a chang<br>the price of t | t prices are given daily<br>from the previous day<br>ositive or negative<br>ending on whether the<br>stock went up or down.<br>ot is reported at 25.78<br>e of $-1.16$ , what was<br>hat stock yesterday? |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>14</b> . 7 – (–12) =                                                                                                                               | A19                                                                                                                                                              |     |                                                                                                                                 |                                                                                                                                                                                                           |
|                                                                                                                                                       | B. 5                                                                                                                                                             |     | A. 24.62                                                                                                                        | B. 23.62                                                                                                                                                                                                  |
|                                                                                                                                                       | C. –5                                                                                                                                                            |     | C. 26.94                                                                                                                        | D. 23.72                                                                                                                                                                                                  |
|                                                                                                                                                       | D. 19                                                                                                                                                            |     |                                                                                                                                 |                                                                                                                                                                                                           |
|                                                                                                                                                       | E. None of the above                                                                                                                                             |     |                                                                                                                                 |                                                                                                                                                                                                           |
|                                                                                                                                                       |                                                                                                                                                                  | 19. | If Campbell S                                                                                                                   | Soup's current price of angle of $\pm$ 57 from                                                                                                                                                            |
| <b>15.</b> 9 - (-11) - 1                                                                                                                              | = A. 19<br>B3                                                                                                                                                    |     | yesterday's p<br>yesterday?                                                                                                     | price, what was the price                                                                                                                                                                                 |
|                                                                                                                                                       | C. 3                                                                                                                                                             |     | A. 22.78                                                                                                                        | B. 21.78                                                                                                                                                                                                  |
|                                                                                                                                                       | D. ZI<br>E. None of the above                                                                                                                                    |     | C. 21.68                                                                                                                        | D. 22.68                                                                                                                                                                                                  |
|                                                                                                                                                       |                                                                                                                                                                  |     |                                                                                                                                 |                                                                                                                                                                                                           |
| <b>16.</b>  -6-(-3) =                                                                                                                                 | <ul> <li>A3</li> <li>B. 3</li> <li>C. 9</li> <li>D9</li> <li>E. None of the above</li> </ul>                                                                     | 20. | An optician d<br>prescription s<br>sum of the fi<br>measuremen<br>is the prescri<br>reading was<br>was (-2.4)?                  | letermines lens<br>strength by taking the<br>rst and second<br>t on a lensometer. What<br>ption strength if the first<br>+5.25 and the second                                                             |
| <ol> <li>The altitude o<br/>California is 1<br/>level and the<br/>282 feet below<br/>feet. What is to<br/>between the r<br/>floor of Death</li> </ol> | f a mountain peak in<br>1,045 feet above sea<br>floor of Death Valley is<br>w sea level or -282<br>the different in altitude<br>mountain peak and the<br>Valley? |     | A. –2.85<br>C. 2.85                                                                                                             | B. 7.65<br>D7.65                                                                                                                                                                                          |
| A. 10,763 fee<br>C. 11,327 fee                                                                                                                        | t B –11,327 feet.<br>t D. –10,763 feet                                                                                                                           |     |                                                                                                                                 |                                                                                                                                                                                                           |

## Add & Subtract Signed Numbers

Simplify "double signs" before calculating

| 1.  | -28 =       | <b>11</b> 4 – 6 =     |
|-----|-------------|-----------------------|
| 2.  | -8 - (-7) = | <b>12.</b> -7 + 3 =   |
| 3.  | 6 - (-3) =  | <b>13</b> 5 - (-6) =  |
| 4.  | -1 + -8 =   | <b>14</b> 4 + 6 =     |
| 5.  | -4 + -6 =   | <b>15.</b> -2 + -9 =  |
| 6.  | -91 =       | <b>16</b> . 3 + 9 =   |
| 7.  | -5 + 9 =    | <b>17.</b> 6 + (-1) = |
| 8.  | 8 + (-1) =  | <b>18</b> 1 + (-1) =  |
| 9.  | -9 + -5 =   | <b>19.</b> 2 – (-8) = |
| 10. | -3 + -5 =   | <b>20.</b> -2 + -8 =  |

## Add & Subtract Signed Numbers

Simplify "double signs" before calculating

| 1.  | 13 – 42 =    | 11. | 57 + 68 =     |
|-----|--------------|-----|---------------|
| 2.  | -70 + 43 =   | 12. | -57 – -61 =   |
| 3.  | -74 + -1 =   | 13. | -86 - 93 =    |
| 4.  | -8 + 62 =    | 14. | -17 – (-90) = |
| 5.  | -9 + (-47) = | 15. | -471 =        |
| 6.  | 35 + 66 =    | 16. | -7838 =       |
| 7.  | -81 + -67 =  | 17. | -94 + -14 =   |
| 8.  | -4545 =      | 18. | -19 + -20 =   |
| 9.  | -68 + 77 =   | 19. | -3642 =       |
| 10. | -81 + -74 =  | 20. | -82 + 11 =    |

#### **Multiply Signed Numbers**

Apply the Truth Table before calculating

| 1. | (-5) (-2) = | 11. | 5 × 8 = |
|----|-------------|-----|---------|
|    |             |     |         |

- **2**. (4) (-3) = **12.** (3) (0) =
- **3**. (-6) (3) = **13**. 0 × -4 =
- **4.** -5 2 = **14**. (2) (2) =
- **15**. -7 -5 = **5.** (9) (-4) =
- **6**. (5) (-8) = **16**. (-7) (9) =
- **7.** 5 × -2 = **17.** (6) (3) =
- **8**. 8 × 8 = **18**. (-4) (1) =
- **9**. (9) (-5) = **19.** -9 • 0 =
- **10.** -9 × -7 = **20**. (2) (3) =

### **Multiply Signed Numbers**

Apply the Truth Table before calculating

**1.**  $23 \times -78 =$ **11.** (-27) (32) = **2.** (42) (24) = **12**. (94) (-50) = **3.** -58 × -24 = **13**. (-49) (14) = **4.** (53) (36) = **14.** (-36) (-38) = **5**. 83 × 8 = **15.** -82 × -9 = **6**. (37) (97) = **16.** 52 × 43 = 7. (-91) (74) = **17.** 48 × -87 = **8**. (52) (-41) = **18.** -93 × 53 = **9.** 69 × 25 = **19.** 49 × 54 = **10**. 62 × -18 = **20.** (97) (-81) =

### Divide Signed Numbers

Apply the Truth Table before calculating

| 1.  | 6 / 2 =    | <b>11.</b> -8 / -2 =  |
|-----|------------|-----------------------|
| 2.  | -45 / 5 =  | <b>12</b> . 64 / 8 =  |
| 3.  | 8 / -1 =   | <b>13.</b> -3 / 1 =   |
| 4.  | -15 ÷ -3 = | <b>14.</b> 24 / -8 =  |
| 5.  | -40 / 8 =  | <b>15</b> . 36 / 4 =  |
| 6.  | -9 / 1 =   | <b>16</b> . 48 / -8 = |
| 7.  | -18 ÷ 9 =  | <b>17.</b> 64 ÷ -8 =  |
| 8.  | 20 / 5 =   | <b>18.</b> 6 ÷ -3 =   |
| 9.  | -21 / 3 =  | <b>19.</b> -10 / 5 =  |
| 10. | 4 / 2 =    | <b>20.</b> -45 / -5 = |

## Divide Signed Numbers

Apply the Truth Table before calculating

| 1.  | 135 / -27 = | 11. | 264 ÷ 88 =   |
|-----|-------------|-----|--------------|
| 2.  | -64 ÷ -16 = | 12. | -696 / -87 = |
| 3.  | 31 / -31 =  | 13. | 4 / -4 =     |
| 4.  | -279 / 93 = | 14. | 50 / 25 =    |
| 5.  | 387 / -43 = | 15. | -85 / 85 =   |
| 6.  | 168 ÷ -28 = | 16. | -54 / -9 =   |
| 7.  | 413 / -59 = | 17. | -180 / 60 =  |
| 8.  | 366 ÷ 61 =  | 18. | -144 ÷ -36 = |
| 9.  | -232 / 29 = | 19. | -152 ÷ 76 =  |
| 10. | -63 ÷ -9 =  | 20. | 73 ÷ -73 =   |

Name:

Equivalent Forms Problems Set 1



С D В А Ο Ο  $\bigcirc$ Ο 1 Ο Ο 0 2 Ο Ο ()3 Ο Ο  $\supset$ 4  $\bigcirc$ Ο О 5 Ο  $\bigcirc$ O 6 0  $\bigcirc$  $\bigcirc$ 7 Ο Ο Ο 8 Ο  $\bigcirc$ 9 Ο Ο 10 () $\bigcirc$ 0 О 11 12 Ο Ο Ο ( 0 0 13 О Ο Ο Ο 14 0  $\bigcirc$ 15 ()Ο  $\bigcirc$ 16 Ο  $\bigcirc$  $\bigcirc$ 17  $\bigcirc$ () $\bigcirc$ 0 18 Ο 0 19 Ο ( ) $\bigcirc$ Ο 20  $\cap$  $\bigcirc$ )

Equivalent Forms Problems Set 2

Name:

Addition/Subtraction of Integers Set

С Е В D А 0 O Ο O Ο 1 0 Ο Ο 2 Ο 0  $\bigcirc$  $\cap$ з Ο Ο Ο ) 4 Ο 0  $\bigcirc$ 5 0 Ο O 6 Ο  $\bigcirc$  $\bigcirc$ 7 Ο Ο O 8  $\bigcirc$ Ο  $\bigcirc$ 9 Ο Ο 10 () $\bigcirc$ 0  $\bigcirc$ 11  $\bigcirc$ Ο 12 ()0  $\bigcirc$ 13 ()Ο Ο 14  $\bigcirc$  $\bigcirc$ О  $\bigcirc$ 15 Ο  $\bigcirc$  $\bigcirc$ 16 1) Ο  $\bigcirc$ 17  $\cap$ Ο Ο  $\bigcirc$ 18 Ο  $\bigcirc$ 0 19 Ο  $\bigcirc$ 20  $\cap$ 

 $\stackrel{\mathsf{c}}{\bigcirc}$ D В А Ô Ο  $\bigcirc$ 1 Ο Ο  $\bigcirc$ 2  $\bigcirc$ 0  $\cap$ 3  $\bigcirc$ 0  $\bigcirc$ 4  $\bigcirc$  $\bigcirc$ 5 Ο Ο 6  $\bigcirc$ ) 7 Ο O 8  $\bigcirc$ Ο 9 ( ) Ο  $\bigcirc$ 10 () $\bigcirc$ Ο 11  $\bigcirc$ 12 () $\bigcirc$ 13 () $\bigcirc$ Ο 14  $\bigcirc$ 15 ()() $\bigcirc$ О  $\bigcirc$ 16  $\bigcirc$ 17  $\cap$ 0 О 18  $\bigcirc$  $\bigcirc$ Ο 19

20

Addition/Subtraction of Integers Set 2

Е

Ο

Ο

Ο

Ο

Ο

Ο

O

Ο

0

Ο

0

Ο

0

Ο

0

Ο

0

Ο

Ο

Ο

ો

B  $\stackrel{\mathsf{c}}{\bigcirc}$ Е D Â O O 1 Ο Ο  $\bigcirc$ 2 Ο Ο Ο Ο з  $\bigcirc$ Ο Ο 4 ()0 0 Ο  $\bigcirc$ 5 Ο  $\bigcirc$  $\bigcirc$ Ο 6 Ο  $\bigcirc$ Ο Ο 7  $\bigcirc$ Ο Ο Ο 8 Ο  $\bigcirc$ Ο Ο 9 Ο Ο 10 Ο Ο 0 11 О Ο Ο 0 O Ο 12 Ο 13  $\cap$ 0 Ο  $\bigcirc$  $\bigcirc$ 14 Ο 0 15  $\bigcirc$ ()()Ο Ο Ο 16 () $\bigcirc$  $\bigcirc$ 17  $\bigcirc$  $\cap$  $\bigcirc$ 18 ()()Ο O 0  $\bigcirc$  $\bigcirc$ 19 20  $\cap$ Ο ()

Multiplication/Division of Integers Set 2

B ် Ε D A Ο 0 1 0 Ο Ο  $\bigcirc$ 2 0 Ο  $\bigcirc$ Ο 3 Ο О Ο Ο 4 Ο  $\bigcirc$ 0 О 5 Ο 0 Ο Ο 6  $\bigcirc$  $\bigcirc$ Ο Ο 7 Ο Ο Ο Ο 8  $\bigcirc$ Ο  $\bigcirc$ Ο 9 0 Ο Ο 10 Ο 0 11  $\bigcirc$  $\bigcirc$ 0 Ο  $\bigcirc$  $\bigcirc$ 12 О 13  $\bigcirc$  $\cap$  $\bigcirc$ ()Ο 0 0 14 Ο 0 15  $\cap$  $\bigcirc$  $\bigcirc$ Ο  $\bigcirc$  $\bigcirc$ 16 ()Ο  $\bigcirc$  $\cap$ 17 Ο 0  $\bigcirc$ 0 18  $\bigcirc$ Ô Ο  $\bigcirc$ 0 19  $\bigcirc$ Ο 0 20

Multiplication/Division of Integers Set 1

Name:

# Module #1: Numerical Sequences

Make a number pattern for each of the descriptions

| 1.  | Start at 63 and subtract 4 each time. | ,,,,, |
|-----|---------------------------------------|-------|
| 2.  | Start at 1 and add 7 each time.       | ,,,,, |
| 3.  | Start at 17 and add 8 each time.      | ,,,,, |
| 4.  | Start at 50 and subtract 5 each time. | ,,,,, |
| 5.  | Start at 65 and subtract 6 each time. | ,,,,, |
| 6.  | Start at 9 and add 6 each time.       | ,,,,, |
| 7.  | Start at 18 and add 3 each time.      | ,,,,, |
| 8.  | Start at 70 and subtract 4 each time. | ,,,,, |
| 9.  | Start at 71 and subtract 2 each time. | ,,,,, |
| 10. | Start at 64 and subtract 8 each time. | ,,,,, |
| 11. | Start at 52 and subtract 1 each time. | ,,,,, |
| 12. | Start at 58 and subtract 5 each time. | ,,,,, |
| 13. | Start at 51 and subtract 1 each time. | ,,,,, |
| 14. | Start at 56 and subtract 3 each time. | ,,,,, |
| 15. | Start at 68 and subtract 6 each time  | ,,,,, |
|     |                                       |       |

Continue the pattern with the next two numbers

1. 19, 24, 29, 34, 39, 44, 49, \_\_\_\_, \_\_\_\_ 2. 10, 19, 28, 37, 46, 55, 64, \_\_\_\_, \_\_\_\_ 3. 22, 25, 28, 31, 34, 37, 40, \_\_\_\_, \_\_\_\_ 4. 31, 37, 43, 49, 55, 61, 67, \_\_\_\_, \_\_\_\_ 5. 60, 57, 54, 51, 48, 45, 42, \_\_\_\_, \_\_\_\_ 6. 2, 6, 10, 14, 18, 22, 26, \_\_\_\_, \_\_\_\_ 7. 79, 71, 63, 55, 47, 39, 31, \_\_\_\_, \_\_\_\_ 8. 93, 89, 85, 81, 77, 73, 69, \_\_\_\_, \_\_\_\_ 9. 97, 88, 79, 70, 61, 52, 43, \_\_\_\_, \_\_\_\_ 10. 76, 71, 66, 61, 56, 51, 46, \_\_\_\_, \_\_\_\_

Continue the pattern with the next two numbers

1. 43, 46, 49, 52, 55, 58, \_\_\_\_, \_\_\_\_

2. 10, 18, 9, 17, 8, 16, \_\_\_\_, \_\_\_\_

3. 50, 53, 47, 50, 44, 47, \_\_\_\_, \_\_\_\_

4. 46, 41, 42, 37, 38, 33, \_\_\_\_, \_\_\_\_

5. 90, 84, 80, 74, 70, 64, \_\_\_\_, \_\_\_\_

6. 70, 72, 64, 66, 58, 60, \_\_\_\_, \_\_\_\_

7. 5, 7, 10, 14, 19, 25, \_\_\_\_, \_\_\_\_

8. 88, 79, 71,64, 58, 53, \_\_\_\_, \_\_\_\_

9. 36, 42, 37, 43, 38, 44, \_\_\_\_, \_\_\_\_

10. 70, 69, 72, 68, 71, \_\_\_\_, \_\_\_\_

Continue the pattern with the next two numbers

1. 96, 97, 88,89, 80, 81, 72, \_\_\_\_, \_\_\_\_

2. 15, 17, 20, 22, 25, 32, \_\_\_, \_\_\_

3. 50, 51, 55, 56, 60, 61, 65, \_\_\_\_, \_\_\_\_

4. 80, 82, 79, 81, 78, 80, \_\_\_\_, \_\_\_\_

5. 55, 47, 48, 40, 41, 33, 34, \_\_\_\_, \_\_\_\_

6. 5, 10, 12, 17, 19, 24, 26, \_\_\_\_, \_\_\_\_

7. 30, 29, 38, 37, 46, 45, 54, \_\_\_\_, \_\_\_\_

8. 40, 41, 38, 40, 37, 40, 37, \_\_\_\_, \_\_\_\_

9. 34, 36, 40, 46, 54, 64, \_\_\_\_, \_\_\_\_

10. 67, 60, 63, 56, 59, \_\_\_\_, \_\_\_\_

Continue the pattern with the next two numbers

1. 2, 4, 6, 12, 14, 28, 30, \_\_\_\_, \_\_\_\_

2. 3, 3, 5, 5, 7, 7, 9, 9, \_\_\_\_, \_\_\_\_

3. 5, 11, 18, 26, 35, 45, \_\_\_\_, \_\_\_\_

4. 76, 73, 75, 70, 72, 65, 67, \_\_\_\_, \_\_\_\_

5. 90, 82, 87, 80, 85, 76, \_\_\_\_, \_\_\_\_

6. 1, 2, 3, 6, 7, 14, 15, \_\_\_\_, \_\_\_\_

7. 1, 2, 4, 8, 15, 31, \_\_\_\_, \_\_\_\_

8. 90, 93, 85, 88, 81, 84, \_\_\_\_, \_\_\_\_

9. 4, 6, 8, 11, 13, 17, \_\_\_\_, \_\_\_\_

10. 96, 86, 77, 69, 62, 56, \_\_\_\_, \_\_\_\_

Continue the pattern with the next two numbers

1. 9, 11, 14, 18, 23, 29, \_\_\_\_, \_\_\_\_

2. 71, 67, 65, 60, 58, 52, 50, \_\_\_\_, \_\_\_\_

3. 10, 16, 17, 24, 25, 33, 34, \_\_\_\_, \_\_\_\_

4. 2, 8, 16, 26, 38, 52, \_\_\_\_, \_\_\_\_

5. 35, 30, 38, 33, 41, 36, \_\_\_\_, \_\_\_\_

6. 99, 96, 95, 91, 90, 85, 84, \_\_\_\_, \_\_\_\_

7. 78, 74, 77, 72, 75, 69, 72, \_\_\_\_, \_\_\_\_

8. 1, 9, 16, 22, 27, 31, 34, \_\_\_\_, \_\_\_\_

9. 10, 8, 12, 9, 13, 8, 12, \_\_\_\_, \_\_\_\_

10. 24, 29, 27, 32, 29, 34, 30, \_\_\_\_, \_\_\_\_

Write the next three terms in the patterns below

1. 51, 44, 37, 30, \_\_\_\_, \_\_\_\_, \_\_\_\_. 2. 54, 51, 48, 45, \_\_\_\_, \_\_\_\_, 4. 63, 58, 53, 48, \_\_\_\_, \_\_\_\_, 3. 52, 48, 44, 40, \_\_\_\_, \_\_\_\_, \_\_\_\_. 5. 7, 9, 11, 13, \_\_\_\_, \_\_\_\_, \_\_\_\_. 6. 12, 20, 28, 36, \_\_\_\_, \_\_\_\_, 7. 4, 10, 16, 22, \_\_\_\_, \_\_\_\_, \_\_\_\_. 8. 13, 16, 19, 22, \_\_\_\_, \_\_\_\_, 9. 10, 18, 26, 34, \_\_\_\_, \_\_\_\_, \_\_\_\_. 10. 23, 29, 35, 41, \_\_\_\_, \_\_\_\_, 11. 72, 66, 60, 54, \_\_\_\_, \_\_\_\_, \_\_\_\_. 12. 58, 51, 44, 37, \_\_\_\_, \_\_\_\_, 13. 8, 16, 24, 32, \_\_\_\_, \_\_\_\_, \_\_\_\_. 14. 22, 30, 38, 46, \_\_\_\_, \_\_\_\_, **15**. 17, 22, 27, 32, \_\_\_\_, \_\_\_\_, \_\_\_\_. 16. 3, 4, 5, 6, \_\_\_\_, \_\_\_\_, \_\_\_\_. 17. 68, 64, 60, 56, \_\_\_\_, \_\_\_\_, \_\_\_\_. 18. 70, 69, 68, 67, \_\_\_\_, \_\_\_\_, \_\_\_\_ **19**. 53, 52, 51, 50, \_\_\_\_, \_\_\_, **20**. 71, 65, 59, 53, \_\_\_\_, \_\_\_, \_\_\_, 21. 62, 60, 58, 56, \_\_\_\_, \_\_\_, \_\_\_. 22. 18, 21, 24, 27, \_\_\_\_, \_\_\_\_, \_\_\_\_ 60, 53, 46, 39, \_\_\_\_, \_\_\_\_, 24. 21, 26, 31, 36, \_\_\_\_, \_\_\_\_, \_\_\_\_ 23. 66, 64, 62, 60, \_\_\_\_, \_\_\_\_, \_\_\_\_. 26. 65, 60, 55, 50, \_\_\_\_, \_\_\_\_, \_\_\_\_, 25. 24, 31, 38, 45, \_\_\_\_, \_\_\_\_, 28. 16, 20, 24, 28, \_\_\_\_, \_\_\_\_, \_\_\_\_ 27. 29. 73, 72, 71, 70, \_\_\_\_, \_\_\_, 30. 69, 67, 65, 63, \_\_\_, \_\_\_, \_\_\_,

## **Practice Questions**

| <b>Set 3</b> (Answers begin on page 102.)               | <b>46.</b> 14 14 26 26 38 38 50 |
|---------------------------------------------------------|---------------------------------|
|                                                         | <b>a.</b> 60 72                 |
| This set will give you additional practice dealing with | <b>b.</b> 50 62                 |
| number series questions.                                | <b>c.</b> 50 72                 |
| 1                                                       | <b>d.</b> 62 62                 |
| <b>41.</b> 44 41 38 35 32 29 26                         | <b>e.</b> 62 80                 |
| <b>a.</b> 24 21                                         |                                 |
| <b>b.</b> 22 19                                         | <b>47.</b> 8 12 9 13 10 14 11   |
| <b>c.</b> 23 19                                         | <b>a.</b> 14 11                 |
| <b>d.</b> 29 32                                         | <b>b.</b> 15 12                 |
| <b>e.</b> 23 20                                         | <b>c.</b> 8 15                  |
|                                                         | <b>d.</b> 15 19                 |
| <b>42.</b> 6 10 14 18 22 26 30                          | <b>e.</b> 8 5                   |
| <b>a.</b> 36 40                                         |                                 |
| <b>b.</b> 33 37                                         | <b>48.</b> 4 7 26 10 13 20 16   |
| <b>c.</b> 38 42                                         | <b>a.</b> 14 4                  |
| <b>d.</b> 34 36                                         | <b>b.</b> 14 17                 |
| e. 34 38                                                | <b>c.</b> 18 14                 |
|                                                         | <b>d.</b> 19 13                 |
| <b>43.</b> 34 30 26 22 18 14 10                         | <b>e.</b> 19 14                 |
| <b>a.</b> 86                                            |                                 |
| <b>b.</b> 64                                            | <b>49.</b> 3 8 10 15 17 22 24   |
| c. 1418                                                 | <b>a.</b> 26 28                 |
| <b>d.</b> 62                                            | <b>b.</b> 29 34                 |
| <b>e</b> . 4 0                                          | <b>c.</b> 29 31                 |
|                                                         | <b>d.</b> 26 31                 |
| <b>44.</b> 2 44 4 41 6 38 8                             | <b>e.</b> 26 32                 |
| <b>a</b> . 10.12                                        |                                 |
| <b>b.</b> 35 32                                         | <b>50.</b> 17 14 14 11 11 8 8   |
| c. 34 9                                                 | <b>a.</b> 8 5                   |
| <b>d</b> . 35 10                                        | <b>b.</b> 5 2                   |
| e. 10.52                                                | <b>c.</b> 8 2                   |
|                                                         | <b>d.</b> 5 5                   |
| <b>45.</b> 32 29 26 23 20 17 14                         | <b>e.</b> 5 8                   |
| a. 11 8                                                 |                                 |
| <b>b.</b> 12.8                                          | <b>51.</b> 13 29 15 26 17 23 19 |
| c. 117                                                  | <b>a.</b> 21 23                 |
| d. 32.29                                                | <b>b.</b> 20 21                 |
| e. 10.9                                                 | <b>c.</b> 20 17                 |
| •••••                                                   | <b>d.</b> 25 27                 |
|                                                         | <b>e.</b> 22 20                 |

## **Practice Questions**

| <b>57.</b> 11 14 14 17 17 20 20 |
|---------------------------------|
| <b>a.</b> 23 23                 |
| <b>b.</b> 23 26                 |
| <b>c.</b> 21 24                 |
| <b>d.</b> 24 24                 |
| <b>e.</b> 24 27                 |
| <b>58.</b> 17 32 19 29 21 26 23 |
| <b>a.</b> 25 25                 |
| <b>b.</b> 20 22                 |
| <b>c.</b> 23 25                 |
| <b>d.</b> 25 22                 |
| <b>e.</b> 27 32                 |
| <b>59.</b> 10 34 12 31 14 28 16 |
| <b>a.</b> 25 18                 |
| <b>b.</b> 30 13                 |
| <b>c.</b> 19 26                 |
| <b>d.</b> 18 20                 |
| <b>e.</b> 25 22                 |
| <b>60.</b> 32 31 32 29 32 27 32 |
| <b>a.</b> 25 32                 |
| <b>b.</b> 31 32                 |
| <b>c.</b> 29 32                 |
| <b>d.</b> 25 30                 |
| <b>e.</b> 29 30                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |

**d.** 25 23 **e.** 26 22

### **Practice Questions**

**Set 4** (Answers begin on page 103.)

This set contains additional number series questions, some of which are in Roman numerals. These items differ from Sets 1, 2, and 3 because they ask you to find the number that fits somewhere into the *middle* of the series. Some of the items involve both numbers and letters; for these questions, look for a number series *and* a letter series. (For additional practice in working letter series questions, see Set 5.)

- **61.** Look at this series: 8, 43, 11, 41, \_\_, 39, 17, . . . What number should fill in the blank?
  - **a.** 8
  - **b.** 14
  - **c.** 43
  - **d.** 44
- 62. Look at this series: 15, \_\_, 27, 27, 39, 39, . . .
  What number should fill the blank?
  a. 51
  - **b.** 39
  - **c.** 23
  - **d.** 15

**63.** Look at this series: 83, 73, 93, 63, \_\_, 93, 43, . . . What number should fill the blank?

- **a.** 33
- **b.** 53
- **c.** 73
- **d.** 93

64. Look at this series: 4, 7, 25, 10, \_\_, 20, 16, 19, . . . What number should fill the blank?

- **a.** 13
- **b.** 15
- **c.** 20
- **d.** 28

- **65.** Look at this series: 72, 76, 73, 77, 74, \_\_\_, 75, . . . What number should fill the blank?
  - **a.** 70
  - **b.** 71
  - **c.** 75
  - **d.** 78

**66.** Look at this series: 70, 71, 76, \_\_\_, 81, 86, 70, 91, . . . What number should fill the blank?

- **a.** 70
- **b.** 71
- **c.** 80
- **d.** 96

**67.** Look at this series: 664, 332, 340, 170, \_\_, 89, . . . What number should fill the blank?

- **a.** 85
- **b.** 97
- **c.** 109
- **d.** 178

Answer as many questions as you can in 20 minutes. Bubble in your answers on the separate answer sheet

Identify the missing number at the end of the series.

|                          | Α   | B   | С   | D   | Ε   |       |
|--------------------------|-----|-----|-----|-----|-----|-------|
| 1) 3, 9, 15, 21, ?       | 30  | 27  | 25  | 28  | 29  | ABCDE |
|                          |     |     |     |     |     |       |
|                          | Α   | В   | С   | D   | E   |       |
| 2) 4, 13, 21, 28, ?      | 37  | 36  | 31  | 34  | 33  | ABCDE |
|                          |     |     |     |     |     | -     |
|                          | Α   | В   | С   | D   | E   |       |
| 3) 798, 777, 756, 735, ? | 712 | 711 | 720 | 710 | 714 | ABCDE |
|                          |     |     |     |     |     | -     |
|                          | Α   | B   | С   | D   | Ε   |       |
| 4) 2, 5, 9, 14, 20, ?    | 23  | 29  | 27  | 25  | 28  | ABCDE |

Identify the missing number or letter within the series.

|                          | Α   | B   | С   | D   | E   |       |
|--------------------------|-----|-----|-----|-----|-----|-------|
| 6) 16, 18, 21, ?, 30     | 27  | 28  | 22  | 25  | 26  | ABCDE |
|                          |     |     |     |     |     |       |
|                          | Α   | B   | С   | D   | Ε   |       |
| 7) 97, 94, ?, 79, 67, 52 | 88  | 86  | 70  | 81  | 82  | ABCDE |
|                          |     |     |     |     |     |       |
|                          | Α   | В   | С   | D   | Ε   |       |
| 8) 21, ?, 8, 5, 3, 2     | 12  | 14  | 13  | 17  | 11  | ABCDE |
|                          |     |     |     |     |     |       |
|                          | Α   | B   | С   | D   | Ε   |       |
| 9) ?, 125, 64, 27, 8, 1  | 298 | 200 | 175 | 216 | 210 | ΑΒСDΕ |

Answer as many questions as you can in 20 minutes. Bubble in your answers on the separate answer sheet

Identify the missing number at the end of the series.

|                          | Α  | В  | С  | D  | Ε  |       |
|--------------------------|----|----|----|----|----|-------|
| 1) 7, 11, 15, 19, ?      | 22 | 23 | 24 | 25 | 26 | ABCDE |
|                          |    |    |    |    |    |       |
|                          | Α  | В  | С  | D  | Ε  |       |
| 2) 11, 16, 26, 41, ?     | 58 | 60 | 59 | 61 | 66 | ABCDE |
| _                        |    |    |    |    |    |       |
|                          | Α  | В  | С  | D  | Ε  |       |
| 3) 28, 35, 42, 49, 56, ? | 62 | 63 | 64 | 65 | 66 | ABCDE |
|                          |    |    |    |    |    |       |
|                          | Α  | В  | С  | D  | Ε  |       |
| 4) 97, 94, 88, 79, 67, ? | 52 | 50 | 49 | 47 | 44 | ABCDE |
|                          |    |    |    |    |    |       |
|                          | A  | В  | C  | D  | Ε  |       |
| 5) 72, 63, 54, 45, ?     | 32 | 33 | 36 | 39 | 35 | ABCDE |

Identify the missing number or letter within the series.

| 6) 105 9 190 170 165       | A   | B   | C   | <b>D</b> | E   |       |
|----------------------------|-----|-----|-----|----------|-----|-------|
| 0) 195, 2, 180, 170, 165   | 192 | 100 | 185 | 190      | 182 |       |
|                            | Α   | В   | С   | D        | Ε   |       |
| 7) 3, 5, 15, 17, 27, ?, 39 | 31  | 29  | 25  | 35       | 30  | ABCDE |
|                            |     |     |     |          |     |       |
|                            | Α   | В   | С   | D        | Ε   |       |
| 8) 54, ?, 28, 18, 10, 4    | 36  | 35  | 37  | 41       | 40  | ABCDE |
|                            |     |     |     |          |     |       |
|                            | Α   | В   | С   | D        | Ε   |       |
| 9) 1, 3, ?, 9, 27, 243     | 4   | 3   | 5   | 6        | 7   | ABCDE |

Answer as many questions as you can in 20 minutes. Bubble in your answers on the separate answer sheet

Identify the missing number at the end of the series.

|                           | Α         | В         | С    | D  | Ε  |       |
|---------------------------|-----------|-----------|------|----|----|-------|
| 1) 5, 12, 19, 26, ?       | 31        | 33        | 35   | 34 | 37 | ABCDE |
|                           |           |           |      |    |    |       |
|                           | Α         | В         | С    | D  | Ε  |       |
| 2) 11, 16, 26, 41, ?      | 51        | 56        | 61   | 66 | 46 | ABCDE |
|                           |           |           |      | -  |    |       |
|                           | Α         | В         | С    | D  | Ε  |       |
| 3) 100, 96, 91, 85, ?     | 74        | 75        | 77   | 78 | 79 | ABCDE |
|                           |           |           |      |    |    |       |
|                           | Α         | В         | С    | D  | Ε  |       |
| 4) 5, 12, 26, 47, ?       | 66        | 65        | 60   | 70 | 75 | ABCDE |
|                           |           |           |      |    |    |       |
|                           | Α         | В         | С    | D  | Ε  |       |
| 5) 0, 4, 9, 13, 18, ?     | 22        | 20        | 24   | 21 | 25 | ABCDE |
|                           |           |           |      |    |    |       |
|                           |           |           |      |    |    |       |
| Identify the missing numb | er within | n the ser | ies. |    |    |       |
|                           |           |           |      |    |    |       |
|                           | Δ         | B         | C    | D  | F  |       |

|                           |    | <b>D</b> | U  | D  | <b></b> _ |   |   |   |   |   |
|---------------------------|----|----------|----|----|-----------|---|---|---|---|---|
| 6) ?, 14, 12, 11, 11, 12  | 14 | 17       | 18 | 15 | 16        | A | B | С | D | E |
|                           |    |          |    |    |           | _ |   |   |   |   |
|                           | Α  | B        | С  | D  | Ε         |   |   |   |   |   |
| 7) 11, 30, ?, 68, 87, 106 | 50 | 52       | 40 | 49 | 47        | A | B | С | D | Е |
|                           |    |          |    |    |           | _ |   |   |   |   |
|                           | Α  | B        | С  | D  | E         |   |   |   |   |   |
| 8) 68, 72, 75, ?, 82, 86  | 80 | 78       | 77 | 81 | 79        | A | В | С | D | Е |
|                           |    |          |    |    |           | _ |   |   |   |   |
|                           | Α  | B        | С  | D  | E         |   |   |   |   |   |
| 9) ?, 30, 35, 25, 30, 20  | 40 | 45       | 25 | 20 | 30        | A | В | С | D | Е |
|                           |    |          |    |    |           | - |   |   |   |   |
|                           | Α  | B        | С  | D  | E         |   |   |   |   |   |
| 10) 54, 40, 28, ?, 10, 4  | 24 | 16       | 18 | 14 | 15        | A | B | С | D | Е |
|                           |    |          |    |    |           |   |   |   |   |   |

# Numerical Sequences

| 1.  | 73         | 87         | 102        | 118        | $\bigcirc$ | 153        |
|-----|------------|------------|------------|------------|------------|------------|
| 2.  | -43        | -60        | -74        | $\bigcirc$ | -93        | -98        |
| 3.  | 47         | 52         | 55         | $\bigcirc$ | 55         | 52         |
| 4.  | 47         | 26         | $\bigcirc$ | -13        | -31        | -48        |
| 5.  | 57         | 67         | 77         | $\bigcirc$ | 97         | 107        |
| 6.  | 47         | $\bigcirc$ | 29         | 20         | 11         | 2          |
| 7.  | 67         | 70         | 72         | 73         | $\bigcirc$ | 72         |
| 8.  | 51         | 56         | $\bigcirc$ | 72         | 83         | 96         |
| 9.  | 37         | 48         | 59         | 70         | $\bigcirc$ | 92         |
| 10. | $\bigcirc$ | 31         | 17         | 5          | -5         | -13        |
| 11. | $\bigcirc$ | -18        | -1         | 20         | 45         | 74         |
| 12. | 37         | 55         | $\bigcirc$ | 100        | 127        | 157        |
| 13. | 29         | 48         | 65         | $\bigcirc$ | 93         | 104        |
| 14. | 71         | 90         | 109        | 128        | 147        | $\bigcirc$ |
| 15. | 73         | 93         | $\bigcirc$ | 133        | 153        | 173        |
| 16. | -59        | -40        | -16        | 13         | $\bigcirc$ | 86         |
| 17. | $\bigcirc$ | -30        | -15        | 2          | 21         | 42         |
| 18. | 17         | 13         | 10         | $\bigcirc$ | 7          | 7          |
| 19. | -31        | -23        | -15        | $\bigcirc$ | 1          | 9          |
| 20  | $\bigcap$  | 75         | 80         | 82         | 81         | 77         |

| 21.                                                                         | -43                          | -49                        | $\bigcirc$      | -61                           | -67                     | -73                           |
|-----------------------------------------------------------------------------|------------------------------|----------------------------|-----------------|-------------------------------|-------------------------|-------------------------------|
| 22.                                                                         | $\bigcirc$                   | 35                         | 56              | 80                            | 107                     | 137                           |
| 23.                                                                         | 73                           | 84                         | 99              | 118                           | $\bigcirc$              | 168                           |
| 24.                                                                         | -83                          | -70                        | -62             | -59                           | -61                     | $\bigcirc$                    |
| 25.                                                                         | 7                            | 22                         | $\bigcirc$      | 52                            | 67                      | 82                            |
| 26.                                                                         | -11                          | -4                         | $\bigcirc$      | 10                            | 17                      | 24                            |
| 27.                                                                         | $\bigcirc$                   | -12                        | 5               | 20                            | 33                      | 44                            |
| 28.                                                                         | -59                          | -63                        | -69             | -77                           | $\bigcirc$              | -99                           |
| 29.                                                                         | 29                           | 23                         | $\bigcirc$      | 14                            | 11                      | 9                             |
| 30.                                                                         | 29                           | 37                         | 46              | $\bigcirc$                    | 67                      | 79                            |
| 31.                                                                         | $\bigcirc$                   | 92                         | 109             | 124                           | 137                     | 148                           |
| 32.                                                                         | 73                           | 64                         | 52              | $\bigcirc$                    | 19                      | -2                            |
| 33.                                                                         | 53                           | 47                         | $\bigcirc$      | 32                            | 23                      | 13                            |
| 34.                                                                         | 17                           | 11                         | 5               | -1                            | $\bigcirc$              | -13                           |
|                                                                             |                              |                            | -               | -                             | $\bigcirc$              |                               |
| 35.                                                                         | -31                          | -9                         | 16              | 44                            | $\bigcirc$              | 109                           |
| 35.<br>36.                                                                  | -31<br>-43                   | -9<br>-35                  | 16              | 44                            | -17                     | 109<br>-13                    |
| 35.<br>36.<br>37.                                                           | -31<br>-43<br>7              | -9<br>-35<br>-9            | 16<br>          | 44<br>-22<br>-56              | -17<br>-87              | 109<br>-13                    |
| 35.<br>36.<br>37.<br>38.                                                    | -31<br>-43<br>7<br>51        | -9<br>-35<br>-9<br>69      | 16<br>-30<br>88 | 44<br>-22<br>-56<br>108       | -17<br>-87<br>129       | 109<br>-13<br>-0              |
| <ol> <li>35.</li> <li>36.</li> <li>37.</li> <li>38.</li> <li>39.</li> </ol> | -31<br>-43<br>7<br>51<br>-11 | -9<br>-35<br>-9<br>69<br>8 | 16<br>-30<br>88 | 44<br>-22<br>-56<br>108<br>43 | -17<br>-87<br>129<br>59 | 109<br>-13<br>-0<br>-13<br>74 |

|     |            |            |            |            | _          |            |
|-----|------------|------------|------------|------------|------------|------------|
| 41. | 47         | 58         | 70         | 83         | $\bigcirc$ | 112        |
| 42. | 37         | 57         | 76         | $\bigcirc$ | 111        | 127        |
| 43. | 71         | 54         | 37         | $\bigcirc$ | 3          | -14        |
| 44. | -43        | -59        | $\bigcirc$ | -91        | -107       | -123       |
| 45. | 53         | 37         | 21         | $\bigcirc$ | -11        | -27        |
| 46. | 37         | $\bigcirc$ | 85         | 115        | 149        | 187        |
| 47. | -59        | -44        | -27        | -8         | $\bigcirc$ | 36         |
| 48. | -83        | -68        | $\bigcirc$ | -47        | -41        | -38        |
| 49. | 71         | 55         | 42         | 32         | $\bigcirc$ | 21         |
| 50. | $\bigcirc$ | 50         | 63         | 76         | 89         | 102        |
| 51. | $\bigcirc$ | 53         | 50         | 48         | 47         | 47         |
| 52. | 37         | 47         | $\bigcirc$ | 70         | 83         | 97         |
| 53. | 73         | 64         | 56         | $\bigcirc$ | 43         | 38         |
| 54. | 79         | 89         | 101        | 115        | 131        | $\bigcirc$ |
| 55. | 71         | 79         | $\bigcirc$ | 89         | 91         | 91         |
| 56. | 17         | 25         | 34         | 44         | $\bigcirc$ | 67         |
| 57. | $\bigcirc$ | -70        | -55        | -38        | -19        | 2          |
| 58. | 73         | 67         | 65         | $\bigcirc$ | 73         | 83         |
| 59. | -43        | -47        | -51        | $\bigcirc$ | -59        | -63        |
| 60. | $\bigcirc$ | 29         | 50         | 70         | 89         | 107        |

| 61. | 37         | 21  | $\bigcirc$ | -11        | -27        | -43        |
|-----|------------|-----|------------|------------|------------|------------|
| 62. | $\bigcirc$ | 31  | 49         | 71         | 97         | 127        |
| 63. | 57         | 76  | 98         | 123        | $\bigcirc$ | 182        |
| 64. | -11        | 3   | 20         | 40         | 63         | $\bigcirc$ |
| 65. | -83        | -80 | $\bigcirc$ | -68        | -59        | -48        |
| 66. | 71         | 79  | $\bigcirc$ | 101        | 115        | 131        |
| 67. | $\bigcirc$ | 55  | 62         | 68         | 73         | 77         |
| 68. | 71         | 81  | 91         | 101        | $\bigcirc$ | 121        |
| 69. | -11        | -4  | $\bigcirc$ | 1          | -1         | -6         |
| 70. | 71         | 62  | 55         | $\bigcirc$ | 47         | 46         |
| 71. | $\bigcirc$ | 50  | 49         | 44         | 35         | 22         |
| 72. | 29         | 20  | 12         | $\bigcirc$ | -1         | -6         |
| 73. | -43        | -38 | $\bigcirc$ | -28        | -23        | -18        |
| 74. | 73         | 95  | 117        | 139        | $\bigcirc$ | 183        |
| 75. | 29         | 44  | 59         | 74         | $\bigcirc$ | 104        |
| 76. | 33         | 43  | $\bigcirc$ | 66         | 79         | 93         |
| 77. | -31        | -20 | -9         | 2          | 13         | $\bigcirc$ |
| 78. | 51         | 56  | 61         | 66         | 71         | $\bigcirc$ |
| 79. | 53         | 71  | $\bigcirc$ | 113        | 137        | 163        |
| 80. | -59        | -41 | -20        | $\bigcirc$ | 31         | 61         |

| •    | . –        |            | • •        |            | $\bigcap$  |            |
|------|------------|------------|------------|------------|------------|------------|
| 81.  | -43        | -32        | -21        | -10        | $\bigcirc$ | 12         |
| 82.  | 41         | 49         | 62         | $\bigcirc$ | 103        | 131        |
| 83.  | 33         | 53         | 76         | $\bigcirc$ | 131        | 163        |
| 84.  | 73         | 81         | $\bigcirc$ | 103        | 117        | 133        |
| 85.  | -43        | -28        | -10        | $\bigcirc$ | 35         | 62         |
| 86.  | 47         | $\bigcirc$ | 87         | 107        | 127        | 147        |
| 87.  | 37         | 20         | 6          | -5         | $\bigcirc$ | -18        |
| 88.  | 7          | 15         | $\bigcirc$ | 40         | 57         | 77         |
| 89.  | 57         | 51         | 42         | 30         | $\bigcirc$ | -3         |
| 90.  | $\bigcirc$ | -17        | -8         | -4         | -5         | -11        |
| 91.  | $\bigcirc$ | 72         | 89         | 104        | 117        | 128        |
| 92.  | 79         | 87         | $\bigcirc$ | 103        | 111        | 119        |
| 93.  | 79         | 97         | 120        | $\bigcirc$ | 181        | 219        |
| 94.  | -43        | -23        | -3         | 17         | 37         | $\bigcirc$ |
| 95.  | 41         | 32         | $\bigcirc$ | 8          | -7         | -24        |
| 96.  | 29         | 25         | 21         | 17         | $\bigcirc$ | 9          |
| 97.  | $\bigcirc$ | 99         | 121        | 145        | 171        | 199        |
| 98.  | -11        | -32        | -57        | $\bigcirc$ | -119       | -156       |
| 99.  | 73         | 64         | 57         | $\bigcirc$ | 49         | 48         |
| 100. | $\bigcirc$ | 60         | 60         | 57         | 51         | 42         |

С С С D Ε В D Ε Α В D Ε Α В Α  $\bigcirc$  $\square$  $\bigcirc$ 21 ()  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ ()()1 ()()41 () $\bigcirc$  $\bigcirc$ ()() $\bigcirc$ 22 ()2 42  $\bigcirc$  $\bigcirc$ 3 23 43 Set 2 Set 3  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 4 44 24  $\bigcirc$  $\bigcirc$ () $\bigcirc$  $\bigcirc$ () $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ ()5 25 45  $\bigcirc$  $\bigcirc$ ()26 46 6  $\bigcirc$  $\bigcirc$ ()7 27 47  $\bigcirc$  $\bigcirc$ 8 () 28 ) 48  $\bigcirc$  $\bigcirc$ ()()29 9 49  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ ()()()()()()10 30 ( ) 50 ( )  $\bigcirc$  $\bigcirc$ ()11 31 51  $\bigcirc$  $\bigcirc$ 12 32 52  $\bigcirc$  $\bigcirc$ 13 () 33 ) 53 ( )  $\bigcirc$  $\bigcirc$ ()14 34 54 )  $\bigcirc$  $\bigcirc$ 15 35 55  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\mathbb{C}$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ ()16 ( ) 36 56  $\bigcirc$  $\bigcirc$ 17 ( ) 37 57  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ () $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 18 38 58  $\bigcirc$  $\bigcirc$ 19 ()39 59 20  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ ()()**40** ( ()()60 ()()

Set

С D Е В Α  $\bigcirc$ 76 🔿  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 77 ()  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 78  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 79  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 80  $\bigcirc$ ()  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 81 () $\bigcirc$  $\bigcirc$  $\bigcirc$ 82  $\bigcirc$ () $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 83 () $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 84  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 85 ()  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 86 () $\bigcirc$  $\bigcirc$  $\bigcirc$ 87  $\bigcirc$ 

Set 5

С D Ε В  $\bigcirc$  $\bigcirc$ 

Set 4

Α

 $\bigcirc$ 

()

()

)

61

62

63

64

65

66

67

68

69

70

71

72

73

75

74 ()

( )





Numerical Reasoning Test



С Ε В D Α  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 1  $\bigcirc$  $\bigcirc$  $\bigcirc$ 2  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 3  $\bigcirc$  $\bigcirc$  $\bigcirc$ 4  $\left( \right)$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 5 () $\bigcirc$  $\bigcirc$  $\bigcirc$ 6 () $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 7  $\bigcirc$  $\bigcirc$ 8  $\bigcirc$ () $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 9  $\bigcirc$  $\bigcirc$  $\bigcirc$ 10 () $\bigcirc$  $\bigcirc$ 11  $\bigcirc$ () $\bigcirc$  $\bigcirc$  $\bigcirc$ 12  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 13  $\bigcirc$  $\bigcirc$  $\bigcirc$ ()14  $\bigcirc$  $\bigcirc$  $\bigcirc$ 15 () $\bigcirc$  $\bigcirc$  $\bigcirc$ 16 () $\bigcirc$  $\bigcirc$  $\bigcirc$ 17 () $\bigcirc$  $\bigcirc$  $\bigcirc$ 18 () $\bigcirc$  $\bigcirc$ 19  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 20 () $\bigcirc$  $\bigcirc$  $\bigcirc$ 21 () $\bigcirc$  $\bigcirc$  $\bigcirc$ 22  $\bigcirc$ 

Numerical Reasoning Test 3

Name:

## Module #2: Plug In PEMDAS

#### LU3 Aptitude Exam Test Prep

#### Order of Operations

**For some people,** it is helpful to try to simplify expressions containing signed numbers as much as possible. When you find signed numbers with addition and subtraction operations, you can simplify the task by changing all subtraction to addition. Subtracting a number is the same as adding its opposite. For example, subtracting a three is the same as adding a negative three. Or subtracting a negative 14 is the same as adding a positive 14. As you go through the step-by-step answer explanations, you will begin to see how this process of using only addition can help simplify your understanding of operations with signed numbers. As you begin to gain confidence, you may be able to eliminate some of the steps by doing them in your head and not having to write them down. After all, that's the point of practice! You work at the problems until the process becomes automatic. Then you own that process and you are ready to use it in other situations.

The **Tips for Working with Integers** section that follows gives you some simple rules to follow as you solve problems with integers. Refer to them each time you do a problem until you don't need to look at them. That's when you can consider them yours.

You will also want to review the rules for Order of Operations with numerical expressions. You can use a memory device called a *mnemonic* to help you remember a set of instructions. Try remembering the word **PEMDAS**. This nonsense word helps you remember to:

- **P** do operations inside *Parentheses*
- **E** evaluate terms with *Exponents*
- **M D** do *Multiplication* and *Division* in order from left to right
- **A S** Add and Subtract terms in order from left to right
# Word Translations

| EQUALS           | key words: is, are, has                                      |                                            |
|------------------|--------------------------------------------------------------|--------------------------------------------|
| English          |                                                              | Math                                       |
| Bob is 1         | 8 years old.                                                 | B = 18                                     |
| There <b>a</b>   | re 7 hats.                                                   | h = 7                                      |
| Judi <b>ha</b> s | s 5 books.                                                   | J = 5                                      |
| ADD              | key words: sum; more, greater, or older than; t              | total; altogether                          |
| English          |                                                              | Math                                       |
| The sur          | <b>n</b> of two numbers is 10.                               | x + y = 10                                 |
| Karen h          | as \$5 <b>more than</b> Sam.                                 | K = 5 + S                                  |
| The bas          | e is 3" <b>greater than</b> the height.                      | b = 3 + h                                  |
| Judi is 2        | years <b>older than</b> Tony.                                | J = 2 + T                                  |
| Al threv         | v the ball 8 feet <b>further than</b> Mark.                  | A = 8 + M                                  |
| The tota         | al of three numbers is 25.                                   | a+b+c=25                                   |
| How m            | uch do Joan and Tom have <b>altogether</b> ?                 | J + T = ?                                  |
| SUBTRACT         | key words: difference; fewer, less, or younger t             | han; remain; left over                     |
| English          |                                                              | Math                                       |
| The dif          | ference between two numbers is 17.                           | x - y = 17                                 |
| Jay is 2 y       | years <b>younger than</b> Brett.                             | J = B - 2 (NOT 2 – B)                      |
| After Ca         | arol ate 3 apples, <i>r</i> apples <b>remained.</b>          | r = a - 3                                  |
| Mike ha          | as 5 <b>fewer</b> cats <b>than</b> twice the number Jan has. | M=2J-5                                     |
| MULTIPLY         | key words: of, product, times                                |                                            |
| English          |                                                              | Math                                       |
| 25% of           | Matthew's baseball caps                                      | $0.25 \times m$ , or $0.25m$               |
| Half <b>of</b>   | the boys                                                     | $\frac{1}{2} \times b$ , or $\frac{1}{2}b$ |
| The <b>pro</b>   | oduct of two numbers is 12.                                  | $a \times b = 12$ , or $ab = 12$           |
| Notice t         | hat it isn't necessary to write the times symbol $(\times)$  | ) when multiplying by an unknown.          |
| DIVIDE           | key word: per                                                |                                            |
| English          | · -                                                          | Math                                       |
| 15 blips         | per 2 bloops                                                 | 15 blips<br>2 bloops                       |
| 60 miles         | s per hour                                                   | 60 miles<br>1 hour                         |

22 miles per gallon

 $\frac{22 \text{ miles}}{1 \text{ gallon}}$ 

**W***hole numbers* are made up of ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. In this lesson, you will work only with whole numbers. In later lessons, you will learn specific ways to deal with numbers that come in between whole numbers. These numbers include  $6.5, \frac{1}{2}, 34.6, \frac{2}{3}$ , and so on.

#### **SOLVING PROBLEMS WITH MULTIPLE STEPS**

You are familiar with the four basic *operations*, or ways of calculating: adding, subtracting, multiplying, and dividing. Sometimes a problem will ask you to do more than one operation. For example, if you are asked to solve this problem, what should you do?

 $8 \times 3 + 20 \div 4 =$ 

You could do the operations in order from left to right. That is, you could multiply  $(8 \times 3 = 24)$ , add (24 + 20 = 44), then divide  $(44 \div 4 = 11)$  to get 11. But you would not get the correct answer. The correct answer is 29. It looks tricky, but it's not if you know the *order of operations*. The order of operations involves three simple steps. When you follow these steps, you will get the correct answer.

#### **THE ORDER OF OPERATIONS**

Step 1: Do all the operations in parentheses.Step 2: Multiply and divide numbers in order from left to right.Step 3: Add and subtract numbers in order from left to right.

#### **Example:** $2 + 5 - (9 \div 3) \times 2 =$

To solve this problem, you should follow the steps in the table above.

**Step 1:** Do the operations in parentheses first.

 $2 + 5 - (9 \div 3) \times 2 =$   $2 + 5 - (3) \times 2 =$  **Step 2:** Multiply. 2 + 5 - 6 =**Step 3:** Add and subtract numbers in order f

Step 3: Add and subtract numbers in order, from left to right.

7 - 6 = 1



If you have a series of numbers to add or multiply, the order will not affect your final answer. You can group the numbers in a way that makes the addition or multiplication easier.

#### **Examples:**

3 + 6 = 6 + 3  $9 \times 2 = 2 \times 9$  (2 + 3) + 5 = 2 + (3 + 5) $4 \times (6 \times 8) = (4 \times 6) \times 8$ 

So, if you were asked to solve the following problem

27 + 5 + 3 + 15 =

you might group 27 + 3 and 5 + 15 to make the math easier and faster. Do you see how grouping can make a problem easier? How could you group the numbers in the following problem to make it easier?

 $12 \times 7 \times 5 =$ 

If you know that  $12 \times 5$  is 60, you could do this calculation first. Then calculate  $60 \times 7$  (420). Notice that if you did  $12 \times 7$  first, then you would end with  $84 \times 5$ , which isn't as quick to calculate at  $60 \times 7$ . Regrouping the numbers can speed up your calculations.

Keep in mind that *all* of the operations in the series must be *either* addition *or* multiplication for this shortcut to work. Also, remember that the order of the numbers in subtraction and division *is* important. You cannot change the order of subtraction and division numbers and still get the correct answer.



What if the question had asked: How much did the two girls pay altogether? How would you write the problem in math symbols to answer this question? There is more than one way to write it. Here are some ways you might recognize:

 $2 \times (6.25 + 2) + 4.50 =$  $2 \times 6.25 + 4.50 + 2 \times 2 =$  $2 \times (6.25 + (4.50 \div 2) + 2) =$ 

## Practice

Solve the following problems using the order of operations.

| 1.  | $(8 + 2) - 3 \times 2 =$   | 11. | 5 × 7 + 16 ÷ 4 =                   |
|-----|----------------------------|-----|------------------------------------|
| 2.  | 9 × 5 + 3 ÷ 1 =            | 12. | $12 + 8 - (20 \times 2) \div 10 =$ |
| 3.  | $(3 + 4) \times (2 + 6) =$ | 13. | 3 × 9 – 15 ÷ 5 =                   |
| 4.  | (8 + 12) + (6 ÷ 2) =       | 14. | $14 - 1 - 4 \div 2 =$              |
| 5.  | 9 ÷ 3 + 7 =                | 15. | $12 + 4 \div 4 \times 4 + 7 =$     |
| 6.  | $9 \times 7 + 8 \div 4 =$  | 16. | (13 + 2) ÷ 3 + 2 =                 |
| 7.  | 6 × (5 + 2) – 1 =          | 17. | $11 + 5 + 4 \times 3 + 7 =$        |
| 8.  | (10 × 4) + 12 - 6 =        | 18. | 8 × 6 + 10 ÷ 2 =                   |
| 9.  | (9 + 3) × (18 ÷ 3) =       | 19. | 4 × 10 – 7 + 17 + 7 × 2 =          |
| 10. | (18 + 6) ÷ (18 –12) =      | 20. | 8 × 4 + 21 ÷ 3 – 7 + 9 – 1         |

## Practice

Translate each problem into math symbols. Then use the order of operations to solve each problem.

- 21. Add 30 and 45. Then divide by 5.
- 22. Divide 81 by 9. THen multiply the quotient by 9.
- 23. Multiply 9 and 6. Then add 12 to the product.
- 24. Add the difference of 7 and 3 to the product of 2 and 8.
- 25. Add 12 and 4. Then multiply by 8.
- 26. Divide 42 by 6. Then find the difference between the quotient and 3.
- 27. Multiply the sum of 3 and 7 by the sum of 2 and 8.
- 28. Divide the sum of 15 and 5 by the product of 2 and 5.

## **CHOOSING AN OPERATION**

Often a problem will tell you exactly which operation you should do. However, sometimes you will have to translate the words in a word problem into the operations. Look for these clues when you have to choose the operations.

#### You add (+) when you are asked to

- ▶ find a sum
- ▶ find a total
- combine amounts

#### Key words to look for:

- ► sum
- ► total
- ► altogether

#### You subtract (-) when you are asked to

- ► find a difference
- ▶ take away an amount
- ► compare quantities

#### Key words to look for:

- ► difference
- ► take away
- ► how many more than
- ► how much less than
- ► how many fewer than
- ► how much is left over

#### You multiply $(\times, \cdot)$ when you are asked to

- ▶ find a product
- ► add the same number over and over
  - Key words to look for:
  - ► product
  - ► times

#### You divide (÷) when you are asked to

- ▶ find a quotient
- ▶ split an amount into equal parts

#### Key words to look for:

- ▶ quotient
- ▶ per

**Example:** Add the product of 6 and 3 to the sum of 10 and 4.

To solve this problem, begin by translating the words into math symbols. You know from the lists on the previous page and above on this page that the word *product* means to multiply. So you will need to multiply 6 and 3. You also know that *sum* means to add. Thus, you could write the problem like this:

 $6 \times 3 + 10 + 4 =$ 

Now follow the order of operations to solve the problem you have written:

Step 1: There are no parentheses. Skip to Step 2. Step 2: Multiply.  $6 \times 3 + 10 + 4 =$  18 + 10 + 4 =Step 3: Add in order from left to right. 28 + 4 = 32

**Example:** Elsa and Thuy went to a movie at the cinema. They shared a large popcorn. Each girl paid for her own drink. The movie cost \$6.25. The popcorn cost \$4.50. Each drink cost \$2. How much did each girl pay?

Begin by translating the words into math symbols. The cost of the popcorn should be divided between the two girls. So, each girl paid

 $6.25 + (4.50 \div 2) + 2 =$ 

Now solve the problem following the order of operations.

Each girl paid \$10.50 for the movie and food.

- 1.  $3 \times (2 \times 4^3) \div 4$  2.  $(4^3 + 2 1)$
- 3.  $(5 \times 3) \times 1 + 5$  4.  $(7^2 2^3 6)$
- 5.  $(5^3 + 7) \times 2$  6.  $4 (9 + 2^2 \div 2)$
- 7.  $6 (9 + 8^2 \times 1^3) + 5$  8.  $(2 \div 4 \times 8)$
- 9.  $8 (3 + 4^3) \times 5$  10.  $5 \times (2^3 8) \times 5$
- 11.  $(9 \times 9 + 5)$  12. (1 + 4 4)
- 13.  $5 \times (4 \div 1^2 + 8)$  14.  $(5 8^2 + 6 1)$
- 15.  $2^2 \div (6 \div 9) 5$  16.  $(3 + 1^2 + 4)$
- 17.  $1^3 (2 + 3 + 7) \times 5$  18.  $3 \times (2^3 + 5) + 2$
- 19.  $9 \times (2^3 \div 4 \times 5)$  20. (8 + 7 + 2 9)

# Order of Operations Simplify the Expression 2. $(6^3 - 9 - 1)$ 1. $3 - (2^3 \div 1) + 5$ 3. $(5 + 7^3) \div 7 \times 7$ 4. (2-7) - 8 - 35. $(6 + 7^2) + 1$

- 6.  $4^3 (2 + 2^3) \times 5$
- 8.  $(3^2 3^2) + 5$ 7. (6 - 1 + 7)
- 10.  $6 (8 + 3^3) 4$ 9.  $(7 + 8 - 4^2) \times 2 + 1$
- 11.  $(3 + 3 \times 6 + 3^2 3)$ 12.  $(7 + 2^3) \times 9$
- 13.  $(3 \times 6) 5$ 14.  $6 \times (2 \div 1) \div 1$
- 15.  $(2^3 9 8) \div 3 \times 3$ 16.  $2^3 \div (7 \div 7 \div 8)$
- 17.  $(6 + 6^2) \times 3$ 18.  $(3 + 1) \times 8 \times 4$
- 20.  $6^2 3 \times (3^2 \times 2) + 5$ 19.  $(7^3 \times 4) + 7$

- 1.  $4^2 + (1 \times 5 + 7^2) + 8$  2.  $6^2 \div (2 8) + 1 8$
- 3.  $(6^2 \times 7) \div 2$  4.  $9 (5^2 + 7) \div 2$
- 5. (6+8-2) 6.  $(1-4^2) \times 2$
- 7.  $5 + (4^3 + 1) + 8$  8. (4 + 8) + 1
- 9.  $(2^2 + 9 \div 1)$  10. (3 + 8 1)
- 11.  $3^2 + 9^2 (8 + 7) \div 5$  12.  $2 + 3 \times (8 + 5^3 \div 1)$
- 13.  $(3^2 \times 3 + 4 + 2) 1$  14.  $(4^3 \times 3^2 \div 4)$
- 15.  $(9 \times 9^3 + 4)$  16.  $5 9 + (7 \times 2^2 8)$
- 17.  $(8-3^2)-8$  18.  $(5^3+3-2^3+6-8)$
- 19.  $(2 \times 5 \div 5)$  20.  $(1^2 \times 7) \times (8^2 8) \times 1$

- 1.  $(2^3 + 5 \times 8)$  2.  $(2 \times 6^3 + 6^3 \times 1^2 + 2)$
- 3.  $(4 \div 1) \times 1$  4.  $(6 \times 3) \times 7$
- 5.  $(6-5^2) + 3^3 \times 2$  6. (1-6-3)
- 7.  $5^2 + 9 + (2^2 \times 1^3 \times 5)$  8.  $(7^2 \div 1 8) + 7^3 + 4$
- 9.  $(9^2 3) + 9$  10.  $(3^3 + 9) \times (1 + 9 2)$
- 11.  $9 + 9 + (6^2 6) \times 4$  12.  $5 (3 3) + 6^3 \div 1$
- 13.  $6 + 1 \times (9 4) + 6$  14.  $(6 \div 6) \times (2^2 + 8) \div 1$
- 15.  $(2^2 \times 4 \times 3)$  16.  $(1^3 6) \div 5$
- 17.  $(7 2^2 + 3)$  18.  $4^3 \times (6 + 8) \div 1$
- 19.  $4 \times (9^2 \div 6 \times 5)$  20.  $(5 \times 8^2) + 9$

- 1.  $(7-5^3) + 5$  2.  $7^3 + (8 \div 1^2 5)$
- 3.  $(9^2 \times 4 6)$  4.  $(5^2 \times 2^2 8)$
- 5.  $(9-5) \div (8 \div 8) + 1$  6.  $1^2 + (1^2 5^2) + 9$
- 7.  $(4^2 1^3) \times (5 9 6)$ 8.  $(1 + 2^3 \div 4) + 5^3 + 8$
- 9.  $(1^2 \div 1) 9 4$  10.  $(2^3 + 6^2 3^2 + 9 \times 3)$
- 11.  $(7 \times 4^3 + 1) + 9 \times 8$  12.  $(1^2 \div 1 + 6)$
- 13.  $4^2 (9 \times 7^3) 4^3 + 8$  14.  $3 2^2 (7^3 + 2^2) + 6$
- 15.  $5 (6 + 2^2) + 9^2 2$  16.  $9^3 + (5^2 + 6 \div 2)$
- 17.  $9 + (4 \times 4^2 4)$  18. (7 + 1) + 2
- 19. 1 + (9 + 6) + 3 20.  $(4^3 9 + 4)$

- 1.  $(3^3 + 7) 1$ 2.  $(2^3 - 5^2 \times 7^3) + 1$
- 3.  $8^3 \times (2^2 + 7 7) + 5$ 4.  $4 + (9^2 - 7) \times 7$
- 5.  $(9^2 + 5) 8^3 + 1$  6.  $(4^2 \times 2^2 \div 8)$
- 7.  $(2 \times 7 \times 8)$  8.  $(5 \times 9 \times 1^2) \div 5 \times 2$
- 9.  $(8^3 2^2) \times 3$  10. (3 + 5) + 8
- 11.  $5^3 \div (7^3 \div 7^3) \times 6$  12.  $(5 \times 3 + 4^2) + 2$
- 13.  $(5 + 9^2 \times 2^2) 9 \times 7$  14.  $(1 5) 9^2 + 2$
- 15.  $6 + (7^3 \div 7) 6 3$  16.  $(3 + 4^2 + 8)$
- 17.  $8^2 \times (1 \times 1^3 9 \times 8)$  18. (8 6 + 9) + 3 6
- 19.  $3 \times (7-6) \times 7$  20.  $(3^2 + 8^2 + 9)$

$$(7 - 3^{3}) - 5 - 9 = (6 - 5) - 8 \div 2 =$$

$$(3^{3} \times 3) - 5 - 8 = (3 \times 5 \times 7) =$$

$$6^{2} - (6 \times 7 \times 5) = (3 \times 5) \times 5 =$$

$$(2^{2} - 7^{2}) - (8 \div 4) \times 7 = 6 + 5 + (9 \div 3^{3} \times 7) =$$

$$(5 \times 3^{2} + 6) = 3 \times (2 \times 3 \times 2) =$$

$$3^{3} + 10 \times 3 =$$

$$(4^{3} + 4 \times 3) \div 2 - 3 =$$

$$4 \times (3 \div 24 \times 64) - 8 =$$

$$3 \times [5^{2} \times (3^{2} - 1)] =$$

$$(2^{3} - 16 \div 2) \times 3 =$$

$$4^{2} + 15 \times 2 =$$

$$(3^{3} + 5 \times 3) \div 2 - 3 =$$

$$3 \times (4 \div 24 \times 42) - 8 =$$

$$2 \times [5^{2} \times (4^{2} - 3)] =$$

$$(3^{3} - 16 \div 2) \times 3 =$$

Practice Test #2

- 1. Which of the following is the same as 17+23?
  - A. 17 x 23
  - B. 23 x 17
  - C. 23 + 17
  - D. 17 23
- 2. Which of the following is the same as  $(4 \times 20) (4 \times 7)$ ?
  - (4 x 20) (4 x 7 A. 4 - (20 x 7)
  - A. 4 (20 x 7) B. 4 x 20 x 7
  - b. 4 x 20 x 7
    c. 4 x 20 7
  - D. 4(20 7)

- 3. Which of the following is **not** equal to 7(8 4)?
  - A. 56 7 x 4
  - B. 7 x 8 4
  - C. 7 x 8 7 x 4
  - D. 7 x 4

#### Complete each exercise by applying the rules for order of operations.

- 4.  $3^2 \times 4^3$ 
  - A. 576
  - B. 765
  - C. 35
  - D. 72
- 5. 27 256  $\div$  4<sup>3</sup>
  - A. 32
  - B. 23
  - C. 56
  - D. 35
- 6. An agent charges \$150 per gig to book a rock band, plus \$75 per month for travel expenses. What was his monthly fee if he booked 6 gigs for the band last month?
  - A. \$900
  - B. \$600
  - C. \$11,250
  - D. \$975

- Six people in a club will share the expenses of a party that costs \$240. How much will Katie pay for her share of the party if the club owes her \$8?
  - A. \$40
  - B. \$32
  - C. \$24
  - D. \$38
- 8. Jesse spends \$5 a day on lunch. Which algebraic expression correctly represents the amount of money he will spend on lunch in x days?
  - A. x 5 B. 5x C. 5+x
  - D.  $x^5 + 5$

## Practice Test #2

| <ul> <li>9. Which algebraic expression correctly represents this phrase? The quotient of twelve and seven times a number, decreased by five.</li> <li>A. <u>12</u> - 5<br/>7N</li> </ul> | 14. 6(5+3) <sup>2</sup><br>A. 384<br>B. 364<br>C. 264<br>D. 2304 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| B. 5 - <u>12</u>                                                                                                                                                                         | 15. 15 – 3 + $2^3$                                               |
| 7N                                                                                                                                                                                       | A. 20                                                            |
| C. 5 - <u>7</u>                                                                                                                                                                          | B. 4                                                             |
| 12N                                                                                                                                                                                      | C. 14                                                            |
| d. <u>12N – 5</u>                                                                                                                                                                        | D. 22                                                            |
| 7                                                                                                                                                                                        |                                                                  |
|                                                                                                                                                                                          | 16. <u>6 + 8 + 7</u>                                             |
| 10. Which algebraic equation correctly                                                                                                                                                   | 3                                                                |
| A number increased by eight is                                                                                                                                                           | A. 21                                                            |
| nineteen.                                                                                                                                                                                | B. 7                                                             |
| A. $19 - y = 8$                                                                                                                                                                          | C. 17                                                            |
| $B_{19} + y = 8$                                                                                                                                                                         | D. 11                                                            |
| C + 8 = 19                                                                                                                                                                               |                                                                  |
| D = 19v = v - 8                                                                                                                                                                          | 17. 6 + 9 x 4 + 5                                                |
|                                                                                                                                                                                          | A. 74                                                            |
| $11 6 + 8 \times 4$                                                                                                                                                                      | B. 135                                                           |
| Δ 32                                                                                                                                                                                     | C. 47                                                            |
| B 36                                                                                                                                                                                     | D. 87                                                            |
| C 38                                                                                                                                                                                     |                                                                  |
| C. 50                                                                                                                                                                                    | 18. 45 + 8 x 4                                                   |
| D. 30                                                                                                                                                                                    | A. 53                                                            |
| $12(10 \pm 0) \times 5$                                                                                                                                                                  | B. 212                                                           |
| 12. $(10 + 9) \times 5$                                                                                                                                                                  | C. 57                                                            |
| A. 95                                                                                                                                                                                    | D 77                                                             |
| B. 69                                                                                                                                                                                    |                                                                  |
|                                                                                                                                                                                          | $19.9 \pm 40 \pm 8 \pm 6$                                        |
| D. 59                                                                                                                                                                                    |                                                                  |
|                                                                                                                                                                                          | B 3 5                                                            |
| $13.4 + 7 \times 6 + 9$                                                                                                                                                                  | C = 12                                                           |
| A. 55                                                                                                                                                                                    |                                                                  |
| B. 50                                                                                                                                                                                    | D: 9.33                                                          |
| C. 48                                                                                                                                                                                    | $20 - 6(7 + 2)^3$                                                |
| D. 165                                                                                                                                                                                   |                                                                  |
|                                                                                                                                                                                          | A. 2910                                                          |
|                                                                                                                                                                                          | D. 102                                                           |
|                                                                                                                                                                                          |                                                                  |
|                                                                                                                                                                                          | D. 90                                                            |

## LU3 Aptitude Exam Test Prep Solving Algebraic Expressions

Substitute the numbers for the letters, and simplify to one number

Variable Values  

$$a = 3$$
  
 $b = -5$   $y = \frac{1}{2}$   
 $x = 6$ 

1.
$$4a + z$$
10. $2(a^2 + 2y) \div b$ 18. $6y(z + y) + 3ab$ 2. $3x \div z$ 11. $a^3 + 24y - 3b$ 19. $2bx + (z - b)$ 3. $2ax - z$ 12. $-2x - b + az$ 20. $12ab + y$ 4. $5ab + xy$ 13. $5z^2 - 2z + 2$ 21. $y[(\frac{x}{2} - 3) - 4a]$ 5. $4b^2 - az$ 14. $5xy \div 2b$ 22. $10b^3 - 4b^2$ 6. $7x \div 2yz$ 15. $7x + \frac{12}{x} - z$ 23. $8y(a^3 - 2y)$ 7. $bx + z \div y$ 16. $2b^2 \div y$ 24. $z^2 - 4a^2y$ 8. $6b - 2ab$ 17. $bx(z + 3)$ 25. $3x^2b(5a - 3b)$ 9. $a(b + z)^2$ 

December 4, 2019 10:21 AM

LU3 Aptitude Exam Test Prep Solving Algebraic Expressions – A

Substitute the numbers for the letters, and simplify to one number

Variable Values  

$$a = 2$$
  
 $b = -1$   $y = -1$   
 $x = 3$ 

Plug In PEMDAS

1.
$$4a + z$$
10. $2(a^2 + 2y) \div b$ 18. $6y(z + y) + 3ab$ 2. $3x \div z$ 11. $a^3 + 24y - 3b$ 19. $2bx + (z - b)$ 3. $2ax - z$ 12. $-2x - b + az$ 20. $12ab + y$ 4. $5ab + xy$ 13. $5z^2 - 2z + 2$ 21. $y[(\frac{x}{2} - 3) - 4a]$ 5. $4b^2 - az$ 14. $5xy \div 2b$ 22. $10b^3 - 4b^2$ 6. $7x \div 2yz$ 15. $7x + \frac{12}{x} - z$ 23. $8y(a^3 - 2y)$ 7. $bx + z \div y$ 16. $2b^2 \div y$ 24. $z^2 - 4a^2y$ 8. $6b - 2ab$ 17. $bx(z + 3)$ 25. $3x^2b(5a - 3b)$ 9. $a(b + z)^2$  $a(b + z)^2$  $a(b + z)^2$  $a(b + z)^2$ 

Consortium for Worker Education

LU3 Aptitude Exam Test Prep Solving Algebraic Expressions – B

Substitute the numbers for the letters, and simplify to one number

Variable Values  

$$a = 2$$
  
 $b = -2$   $y = -1$   
 $x = 6$ 

1.
$$4a + z$$
10. $2(a^2 + 2y) \div b$ 18. $6y(z + y) + 3ab$ 2. $3x \div z$ 11. $a^3 + 24y - 3b$ 19. $2bx + (z - b)$ 3. $2ax - z$ 12. $-2x - b + az$ 20. $12ab + y$ 4. $5ab + xy$ 13. $5z^2 - 2z + 2$ 21. $y[(\frac{x}{2} - 3) - 4a]$ 5. $4b^2 - az$ 14. $5xy \div 2b$ 22. $10b^3 - 4b^2$ 6. $7x \div 2yz$ 15. $7x + \frac{12}{x} - z$ 23. $8y(a^3 - 2y)$ 7. $bx + z \div y$ 16. $2b^2 \div y$ 24. $z^2 - 4a^2y$ 8. $6b - 2ab$ 17. $bx(z + 3)$ 25. $3x^2b(5a - 3b)$ 9. $a(b + z)^2$ 

LU3 Aptitude Exam Test Prep Solving Algebraic Expressions – C

Substitute the numbers for the letters, and simplify to one number

Variable Values  

$$a = -2$$
  
 $b = -1$   $y = -1$   
 $x = 6$   
 $z = -1$ 

1.
$$4a + z$$
10. $2(a^2 + 2y) \div b$ 18. $6y(z + y) + 3ab$ 2. $3x \div z$ 11. $a^3 + 24y - 3b$ 19. $2bx + (z - b)$ 3. $2ax - z$ 12. $-2x - b + az$ 20. $12ab + y$ 4. $5ab + xy$ 13. $5z^2 - 2z + 2$ 21. $y[(\frac{x}{2} - 3) - 4a]$ 5. $4b^2 - az$ 14. $5xy \div 2b$ 22. $10b^3 - 4b^2$ 6. $7x \div 2yz$ 15. $7x + \frac{12}{x} - z$ 23. $8y(a^3 - 2y)$ 7. $bx + z \div y$ 16. $2b^2 \div y$ 24. $z^2 - 4a^2y$ 8. $6b - 2ab$ 17. $bx(z + 3)$ 25. $3x^2b(5a - 3b)$ 9. $a(b + z)^2$ 

LU3 Aptitude Exam Test Prep Solving Algebraic Expressions – D

Substitute the numbers for the letters, and simplify to one number

Variable Values  

$$a = -1$$
  
 $b = -2$   $y = 1$   
 $x = 6$ 

1.
$$4a + z$$
10. $2(a^2 + 2y) \div b$ 18. $6y(z + y) + 3ab$ 2. $3x \div z$ 11. $a^3 + 24y - 3b$ 19. $2bx + (z - b)$ 3. $2ax - z$ 12. $-2x - b + az$ 20. $12ab + y$ 4. $5ab + xy$ 13. $5z^2 - 2z + 2$ 21. $y[(\frac{x}{2} - 3) - 4a]$ 5. $4b^2 - az$ 14. $5xy \div 2b$ 22. $10b^3 - 4b^2$ 6. $7x \div 2yz$ 15. $7x + \frac{12}{x} - z$ 23. $8y(a^3 - 2y)$ 7. $bx + z \div y$ 16. $2b^2 \div y$ 24. $z^2 - 4a^2y$ 8. $6b - 2ab$ 17. $bx(z + 3)$ 25. $3x^2b(5a - 3b)$ 9. $a(b + z)^2$ 

Consortium for Worker Education

LU3 Aptitude Exam Test Prep Solving Algebraic Expressions — E

Substitute the numbers for the letters, and simplify to one number

Variable Values  

$$a = 2$$
  
 $b = -2$   $y = -1$   
 $x = 6$   
 $z = -1$ 

1.
$$4a + z$$
10. $2(a^2 + 2y) \div b$ 18. $6y(z + y) + 3ab$ 2. $3x \div z$ 11. $a^3 + 24y - 3b$ 19. $2bx + (z - b)$ 3. $2ax - z$ 12. $-2x - b + az$ 20. $12ab + y$ 4. $5ab + xy$ 13. $5z^2 - 2z + 2$ 21. $y[(\frac{x}{2} - 3) - 4a]$ 5. $4b^2 - az$ 14. $5xy \div 2b$ 22. $10b^3 - 4b^2$ 6. $7x \div 2yz$ 15. $7x + \frac{12}{x} - z$ 23. $8y(a^3 - 2y)$ 7. $bx + z \div y$ 16. $2b^2 \div y$ 24. $z^2 - 4a^2y$ 8. $6b - 2ab$ 17. $bx(z + 3)$ 25. $3x^2b(5a - 3b)$ 9. $a(b + z)^2$ 

LU3 Aptitude Exam Test Prep Solving Algebraic Expressions — F

Substitute the numbers for the letters, and simplify to one number

Variable Values  

$$a = -1$$
  
 $b = 2$   $y = 1$   
 $x = 6$   
 $z = 3$ 

1.
$$4a + z$$
10. $2(a^2 + 2y) \div b$ 18. $6y(z + y) + 3ab$ 2. $3x \div z$ 11. $a^3 + 24y - 3b$ 19. $2bx + (z - b)$ 3. $2ax - z$ 12. $-2x - b + az$ 20. $12ab + y$ 4. $5ab + xy$ 13. $5z^2 - 2z + 2$ 21. $y[(\frac{x}{2} - 3) - 4a]$ 5. $4b^2 - az$ 14. $5xy \div 2b$ 22. $10b^3 - 4b^2$ 6. $7x \div 2yz$ 15. $7x + \frac{12}{x} - z$ 23. $8y(a^3 - 2y)$ 7. $bx + z \div y$ 16. $2b^2 \div y$ 24. $z^2 - 4a^2y$ 8. $6b - 2ab$ 17. $bx(z + 3)$ 25. $3x^2b(5a - 3b)$ 9. $a(b + z)^2$ 

#2

**Practice Test** 

Practice Test #1





# Module #3: Variables

| Section | on A                | (10) | 5 - 6x = -13        |
|---------|---------------------|------|---------------------|
| (1)     | 3x + 1 = 10         |      |                     |
| (2)     | 4u + 3 - 11         | (11) | 8 -3 <i>t</i> = 2   |
| (2)     | 4 <i>y</i> + 3 – 11 | (12) | 12 – 5 <i>x</i> = 7 |
| (3)     | 2a - 5 = 7          |      |                     |
| (4)     | 5 <i>m</i> – 6 = 9  | (13) | 4a - 20 = 0         |
|         |                     | (14) | 3y - 9 = 0          |
| (5)     | 5 = 4x + 9          |      |                     |
| (6)     | $2 - 5h \pm 12$     | (15) | 6 + 2b = 0          |
| (0)     | 2 - 50 +12          |      |                     |
| (7)     | 2x - 5 = -11        | (16) | 10 + 5m = 0         |
|         |                     | (17) | -2x + 5 = -7        |
| (8)     | 3n - 7 = -19        |      |                     |
|         |                     | (18) | -5d + 3 = -12       |
| (9)     | 4 - 3w = -2         |      |                     |

| (19) | -12x + 30 = -6 | (29) | 9 - 4x = 6           |
|------|----------------|------|----------------------|
| (20) | -13 = -11y + 9 | (30) | 3t - 2 = 0           |
| (21) | 2 = 7 - 5a     | (31) | 9x - 4 = 0           |
| (22) | 3 = 11 - 4n    | (32) | 7 - 8z = 0           |
| (23) | -35 = -6b + 1  | (33) | 1 - 3x = 0           |
| (24) | -8x + 3 = -29  | (34) | 9 <i>d</i> + 10 = 7  |
| (25) | -3m - 21 = 0   | (35) | 12 <i>w</i> + 11 = 5 |
| (26) | -5x - 30 = 0   | (36) | 6y – 5 = –7          |
| (27) | -4y + 15 = 15  | (37) | 8 <i>b</i> - 3 = -9  |
| (28) | -3x + 19 = 19  | (38) | 5 – 6 <i>m</i> = 2   |

| (39) | 7 - 9a = 4                          | (48) | 8 = 7d - 1           |
|------|-------------------------------------|------|----------------------|
| (40) | 9 = -12c + 5                        | (49) | 8 = 10x - 5          |
| (41) | 0 = -18x + 7                        | (50) | 4 = 7 - 2w           |
| (42) | $2y + \frac{1}{3} = \frac{7}{3}$    | (51) | 7 = 9 – 5 <i>a</i>   |
| (43) | $4a + \frac{3}{4} = \frac{19}{4}$   | (52) | 8 <i>t</i> + 13 = 3  |
| (44) | $2n - \frac{3}{4} = \frac{13}{4}$   | (53) | 12x + 19 = 3         |
| (45) | $3x - \frac{5}{6} = \frac{13}{6}$   | (54) | -6 <i>y</i> + 5 = 13 |
| (46) | $5y + \frac{3}{7} = \frac{3}{7}$    | (55) | -4x + 3 = 9          |
| (47) | $9\chi + \frac{4}{5} = \frac{4}{5}$ |      |                      |

| Section B |                          | (64) | $\frac{2x}{3} - 1 = 5$  |
|-----------|--------------------------|------|-------------------------|
| (56)      | $\frac{1}{2}a - 3 = 1$   | (65) | $\frac{3c}{7} - 1 = 8$  |
| (57)      | $\frac{1}{3}m - 1 = 5$   | (66) | $4 - \frac{3z}{4} = -2$ |
| (58)      | $\frac{2}{5}y + 4 = 6$   | (67) | $3 - \frac{4w}{5} = -9$ |
| (59)      | $\frac{3}{4}n + 7 = 13$  | (68) | $5 + \frac{2y}{3} = 3$  |
| (60)      | $-\frac{2}{3}x + 1 = 7$  | (69) | $17 + \frac{5x}{8} = 7$ |
| (61)      | $-\frac{3}{8}b + 4 = 10$ | (70) | $17 = 7 - \frac{5t}{6}$ |
| (62)      | $\frac{x}{4} - 6 = 1$    | (71) | $9 = 3 - \frac{2x}{7}$  |
| (63)      | $\frac{y}{5} - 2 = 3$    | (72) | $3 = \frac{3a}{4} + 1$  |

| Solve for the Unknown |                        |       |                  |
|-----------------------|------------------------|-------|------------------|
| (73)                  | $7 = \frac{2x}{5} + 4$ | Secti | on C             |
|                       | 40                     | (76)  | 6a + 3 + 2a = 11 |
| (74)                  | $5 - \frac{10}{7} = 8$ | (77)  | 5y + 9 + 2y = 23 |
| (75)                  | $7 - \frac{5}{9}y = 9$ |       |                  |
|                       |                        | (78)  | 7x - 4 - 2x = 6  |
|                       |                        | (79)  | 11z - 3 - 7z = 9 |
|                       |                        | (80)  | 2x - 6x + 1 = 9  |
|                       |                        | (81)  | b - 8b + 1 = -6  |
|                       |                        | (82)  | 3 = 7x + 9 - 4x  |
|                       |                        | (83)  | -1 = 5m + 7 - m  |
|                       |                        | (84)  | 8 = 4n - 6 + 3n  |

Variables

| (85) | 8x + 5 = 4x + 13  | (95)  | 2b + 3 = 5b + 12 |
|------|-------------------|-------|------------------|
| (86) | 6y + 2 = y + 17   | (96)  | m + 4 = 3m + 8   |
| (87) | 5x - 4 = 2x + 5   | (97)  | 4y - 8 = y - 8   |
| (88) | 13b - 1 = 4b - 19 | (98)  | 5a + 7 = 2a + 7  |
| (89) | 15x - 2 = 4x - 13 | (99)  | 6 - 5x = 8 - 3x  |
| (90) | 7a - 5 = 2a - 20  | (100) | 10 - 4n = 16 - n |
| (91) | 3x + 1 = 11 - 2x  | (101) | 5 + 7x = 11 + 9x |
| (92) | n - 2 = 6 - 3n    | (102) | 3 - 2y = 15 + 4y |
| (93) | 2x - 3 = -11 - 2x | (103) | 2x - 4 = 6x      |
| (94) | 4y - 2 = -16 - 3y | (104) | 2b - 10 = 7b     |

| LU3 Aptitude Exam Test Prep Consortium for Worker Education |                  |       |                       |
|-------------------------------------------------------------|------------------|-------|-----------------------|
| Solve for the Unknown                                       |                  |       |                       |
| (106)                                                       | 9y = 5y + 16     | (112) | 5x + 2(x + 1) = 23    |
| (107)                                                       | 8b + 5 = 5b + 7  | (113) | 6y + 2(2y + 3) = 16   |
| (108)                                                       | 6y - 1 = 2y + 2  | (114) | 9n - 3(2n - 1) = 15   |
| (109)                                                       | 7x - 8 = x - 3   | (115) | 12x - 2(4x - 6) = 28  |
| (110)                                                       | 2y - 7 = -1 - 2y | (116) | 7a - (3a - 4) = 12    |
| (111)                                                       | 2m - 1 = -6m + 5 | (117) | 9m - 4(2m - 3) = 11   |
|                                                             |                  | (118) | 5(3 - 2y) + 4y = 3    |
|                                                             |                  | (119) | 4(1 - 3x) + 7x = 9    |
|                                                             |                  | (120) | 5y - 3 = 7 + 4(y - 2) |

| Solve for the Unknown<br>(121) $5 + 2(3b + 1) = 3b + 5$ | (131)  -2[4 - (3b + 2)] = 5 - 2(3b + 6) |
|---------------------------------------------------------|-----------------------------------------|
| (122) $6 - 4(3a - 2) = 2(a + 5)$                        | (132)  -4[x - 2(2x - 3)] + 1 = 2x - 3   |
| (123) $7 - 3(2a - 5) = 3a + 10$                         |                                         |
| (124)  2a - 5 = 4(3a + 1) - 2                           |                                         |
| (125)  5 - (9 - 6x) = 2x - 2                            |                                         |
| (126) $7 - (5 - 8x) = 4x + 3$                           |                                         |
| (127) $3[2-4(y-1)] = 3(2y+8)$                           |                                         |
| (128) $5[2 - (2x - 4)] = 2(5 - 3x)$                     |                                         |
| (129) $3a + 2[2 + 3(a - 1)] = 2(3a + 4)$                |                                         |
| (130) $5 + 3[1 + 2(2x - 3)] = 6(x + 5)$                 |                                         |

## Isolate x, in terms of y

| 1. | y = 5x     | 11. y = 3x - 3     |
|----|------------|--------------------|
| 2. | y = -7x    | 12. y = 1/2 x + 4  |
| 3. | y = 12x    | 13. y = -1/4 x - 6 |
| 4. | y = 1/2 x  | 14. y = 4 - 4x     |
| 5. | y = x/6    | 15. y = -6 + 2x    |
| 6. | y = -x/4   | 16. y = 8 - 1/2 x  |
| 7. | y = x - 6  | 17. y = -10 - 2x   |
| 8. | y = 10 + x | 18. y = -12 + x/6  |
| 9. | y = -4 - x | 19. y = 18 - 6x    |
| 10 | y = 2x + 2 | 20.y = -6 - 1/2 x  |
#### **Tips for Multiplying Polynomials**

When multiplying a polynomial by a monomial, you use the distributive property of multiplication to multiply each term in the polynomial by the monomial.

a(b + c + d + e) = ab + ac + ad + ae

| When multiplying a binomial by a binor                  | mial,                                         |
|---------------------------------------------------------|-----------------------------------------------|
| you use the mnemonic FOIL to remind                     |                                               |
| you of the order with which you multipl                 | У                                             |
| terms in the binomials.                                 | (a+b)(c+d)                                    |
| <b>F</b> is for <b>first</b> . Multiply the first terms |                                               |
| of each binomial.                                       | ([a] + b)([c] + d) gives the term <i>ac</i> . |
| <b>O</b> is for <b>outer</b> . Multiply the outer       | _                                             |
| terms of each binomial.                                 | ([a] + b)(c + [d]) gives the term <i>ad</i> . |
| <b>I</b> is for <b>inner</b> . Multiply the inner terms |                                               |
| of each binomial.                                       | (a + [b])([c] + d) gives the term <i>bc</i> . |
| L is for <b>last</b> . Multiply the last terms          |                                               |
| of each binomial.                                       | (a + [b])(c + [d]) gives the term $bd$ .      |
| Then you combine the terms.                             | ac + ad + bc + bd                             |
|                                                         |                                               |

Multiplying a trinomial by a binomial is relatively easy. You proceed similarly to the way you would when using the distributive property of multiplication. Multiply each term in the trinomial by the first and then the second term in the binomial. Then add the results.

$$(a + b)(c + d + e) = (ac + ad + ae) + (bc + bd + be)$$

#### Practice

Multiply the following polynomials.

| 1.  | x(5x + 3y - 7)                                        |
|-----|-------------------------------------------------------|
| 2.  | 2a(5a <sup>2</sup> – 7a + 9)                          |
| 3.  | $4bc(3b^2c + 7b - 9c + 2bc^2 - 8)$                    |
| 4.  | 3mn(–4m + 6n +7mn² – 3m²n)                            |
| 5.  | $4x(9x^3 + \frac{3}{x^2} - x^4 + \frac{6x - 1}{x^2})$ |
| 6.  | (x + 3)(x + 6)                                        |
| 7.  | (x - 4)(x - 9)                                        |
| 8.  | (2x + 1)(3x - 7)                                      |
| 9.  | (x + 2)(x - 3y)                                       |
| 10. | (7x + 2y)(2x - 4y)                                    |
| 11. | (5x + 7)(5x - 7)                                      |
| 12. | $(28x + 7)(\frac{x}{7} - 11)$                         |
| 13. | $(3x^2 + y^2)(x^2 - 2y^2)$                            |
| 14. | $(4 + 2x^2)(9 - 3x)$                                  |

- 15.  $(2x^2 + y^2)(x^2 y^2)$
- 16.  $(x + 2)(3x^2 5x + 2)$
- 17.  $(2x 3)(x3 + 3x^2 4x)$
- 18.  $(4a + b)(5a^2 + 2ab b^2)$
- 19.  $(3y 7)(6y^2 3y + 7)$
- 20.  $(3x + 2)(3x^2 2x 5)$
- 21. (x + 2)(2x + 1)(x 1)
- 22. (3a 4)(5a + 2)(a + 3)
- 23. (2n-3)(2n+3)(n+4)
- 24.  $(5r-7)(3r^4+2r^2+6)$
- 25.  $(3x^2 + 4)(x 3)(3x^2 4)$

Module #4: Linear Equations

#### **Data Table**

**Cartesian Plot** 



Consortium for Worker Education

b positive

## Eyeballing the y-intercept

Does the line cross above the X axis? Then the y-intercept is positive.

Does the line cross below the X axis? Then the y-intercept is negative.





b negative

For the three graphs below, answer the following questions:

- 1) Is the y-intercept positive or negative?
- 2) Is the y-intercept close to zero, or is it a big number?







Consortium for Worker Education

Linear Equations

*m* positive

*m* negative



Does the line "slope up," left to right? Then the slope is positive.

If the line "slopes down," left to right, the slope is negative.





For the three graphs below, is the slope positive or negative?



*m* > 1

0 < *m* < 1

# Eyeballing the slope magnitude

Is the slope positive? And the line "steep"? Then the slope is greater than one.

Is the slope positive? Is the line "flat"? Then the slope is greater than zero, but less than one.





For the three graphs below, answer the following questions:

- 1) Is the slope positive or negative?
- 2) Is the slope close to zero, or is it a big number?







-1 < m < 0

### Eyeballing the slope magnitude

Is the slope negative? And the line "flat"? Then the slope must be less than zero, but greater than negative one.

Is the slope negative? And the line "steep"? Then the slope is less than negative one.





For the three graphs below, answer the following questions:

- 1) Is the slope positive or negative?
- 2) Is the slope close to zero, or is it a big number?







### **Graphing Linear Equations**

**This chapter asks you** to find solutions to linear equations by graphing. The solution of a linear equation is the set of ordered pairs that form a line on a coordinate graph. Every point on the line is a solution for the equation. One method for graphing the solution is to use a table with x and y values that are solutions for the particular equation. You select a value for x and solve for the y value. But in this chapter, we will focus on the slope and y-intercept method.

The slope and *y*-intercept method may require you to change an equation into the slope-intercept form. That is, the equation with two variables must be written in the form y = mx + b. Written in this form, the *m* value is a number that represents the slope of the solution graph and the *b* is a number that represents the *y*-intercept. The slope of a line is the ratio of the change in the *y* value over the change in the *x* value from one point on the solution graph to another. From one point to another, the slope is the rise over the run. The *y*-intercept is the point where the solution graph (line) crosses the *y*-axis. Another way of saying that is: The *y*-intercept is the place where the value of *x* is 0.

#### **Tips for Graphing Linear Equations**

- Rewrite the given equation in the form y = mx + b.
- Use the *b* value to determine where the line crosses the *y*-axis. That is the point (0,*b*).
- If the value of *m* is negative, use a negative sign in only the numerator or the denominator, not both. For example,  $-\frac{3}{4} = \frac{-3}{4} = \frac{3}{-4}$ .



х

-13 -11 -8 -6 -4 -3 8 10 7 10 3 10 -6 -2

х

-12 -10 -7 8 11 11 -13 -7 -8 0 2 5 7 9 13

LU3 Aptitude Exam Test Prep Plotting (x,y) Coordinates

| 10 $-13$ 4         7 $-10$ 11 $y$ 10 $-9$ 7         5 $-7$ 4         3 $-4$ 7         11 $-1$ 7         10       2       11         7       2       3         -5       9       5         -7       9       10         12       -9       -7         -12       -9       -7         -11       -1       -1         -12       -9       -7         -12       -7       -5         -8       -1       -7         9       7       -10         -8       11       -11         10       -13       6         4       -9       3         10       -7       9         11       -3       6         4       -9       -9         -7       9       -1         -7       9       -1         -7       9       -1         -7       9       -1       -1         -7                                                                                                                                                                                                                                                                                                                                                                                                                                                          | У              | x   | У             |  |   |      |       |  |   |  |                  |   |   |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|---------------|--|---|------|-------|--|---|--|------------------|---|---|---|
| 7       -10       11 $y$ 10       -9       7         5       -7       4         3       -4       7         11       -1       7         10       2       11         7       2       3         -5       9       5         -7       9       10         -12       -9       -7         -9       -7         -9       -7         -9       -7         -9       -7         -11       -10         -8       -1         10       -13         6       -11         -7       9         10       -7         9       -7         11       -11         -2       -10         -8       11         10       -13         6       -11         -7       9         11       -3         6       -11         -7       9         -7       9         -7       10         11       -10         -7                                                                                                                                                                                                                                                                                                                                                                                                                                | 10             | -13 | 4             |  |   |      |       |  |   |  |                  |   |   |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7              | -10 | 11            |  |   |      | У     |  |   |  |                  |   |   |   |
| 5 $-7$ 4         3 $-4$ 7         11 $-1$ 7         10       2       11         7       2       3         -5       9       5         -7       9       10         -12       -9       -7         -12       -9       -7         -12       -9       -7         -12       -7       -5         -8       -1       -7         -9       7       -10         -8       11       -11         y $\frac{x}{y}$ y         10       -13       6         4       -9       3         10       -7       9         11       -3       6         4       -2       4         7       6       11         -7       9       8         -7       10       11         -11       -12       -12         -2       -3       -4         -3       6       -4         -4       -9       -9         -7       9       8     <                                                                                                                                                                                                                                                                                                                                                                                                           | 10             | -9  | 7             |  |   |      |       |  | Τ |  | $\square$        |   |   |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5              | -7  | 4             |  |   |      |       |  |   |  |                  |   |   |   |
| 11       -1       7       2       11       7       2       11       7       2       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11 </th <th>3</th> <th>-4</th> <th>7</th> <th></th> | 3              | -4  | 7             |  |   |      |       |  |   |  |                  |   |   |   |
| 10       2       11       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                               | 11             | -1  | 7             |  |   |      |       |  |   |  |                  |   |   |   |
| 7       2       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10             | 2   | 11            |  |   |      |       |  |   |  |                  |   |   |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7              | 2   | 3             |  |   |      |       |  |   |  |                  |   |   |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -5             | 9   | 5             |  |   |      |       |  |   |  |                  |   |   |   |
| -12       -9       -7       -5         -12       -7       -5         -8       -1       -7         -9       7       -10         -8       11       -11 $y$ $x$ $y$ 10       -13       6         4       -9       3         10       -7       9         11       -3       6         4       -2       4         7       6       11         -7       9       8         -7       10       11         -7       9       8         -7       10       11         -11       -12       -12         -4       -9       -9         -7       9       8         -7       10       11         -11       -12       -12         -4       -9       -9         -8       -5       -11         -7       -2       -5         -9       -1       -1         -8       -6       -9                                                                                                                                                                                                                                                                                                                                                                                                                                             | -7             | 9   | 10            |  |   |      |       |  |   |  |                  |   |   |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -12            | -9  | -7            |  |   |      |       |  |   |  |                  |   |   |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -12            | -7  | -5            |  |   |      |       |  |   |  |                  |   |   |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -8             | -1  | -7            |  |   |      | _     |  |   |  |                  |   |   |   |
| -8       11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -11       -1                                                                                              | -9             | 7   | -10           |  |   |      | _     |  |   |  |                  |   |   |   |
| y       x       y         10 $-13$ 6         4 $-9$ 3         10 $-7$ 9         11 $-3$ 6         4 $-2$ 4 $-7$ 9         11 $-3$ 6         4 $-2$ 4 $-7$ 9       8 $-7$ 9       8 $-7$ 10       11 $-11$ $-12$ $-12$ $-4$ $-9$ $-9$ $-8$ $-5$ $-11$ $-7$ $-2$ $-5$ $-9$ $-1$ $-12$ $-8$ $-6$ $-4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -8             | 11  | -11           |  |   |      | _     |  |   |  |                  |   |   |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V              | x   | V             |  |   |      | _     |  |   |  | $\vdash$         |   | _ |   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>       | 47  | <u> </u>      |  |   |      |       |  |   |  | ╋┯┿              | — | + | + |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10             | -13 | 6             |  |   | <br> | <br>- |  | - |  | ╂─┼              | _ | + |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4              | -9  | 3             |  |   |      | <br>_ |  |   |  | ┢┼               | + | + |   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10             | -/  | 9             |  | _ |      | <br>_ |  |   |  | $\vdash$         | + | + |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11             | -3  | 6             |  |   |      | _     |  |   |  | $\left  \right $ |   | + | + |
| 7 $6$ $11$ $-7$ $9$ $8$ $-7$ $10$ $11$ $-7$ $10$ $11$ $-7$ $10$ $11$ $-11$ $-12$ $-12$ $-11$ $-12$ $-12$ $-11$ $-12$ $-11$ $-12$ $-11$ $-12$ $-11$ $-12$ $-11$ $-12$ $-11$ $-12$ $-11$ $-12$ $-11$ $-12$ $-11$ $-12$ $-11$ $-12$ $-11$ $-12$ $-11$ $-12$ $-11$ $-12$ $-11$ $-12$ $-11$ $-12$ $-11$ $-12$ $-11$ $-12$ $-11$ $-12$ $-11$ $-12$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4              | -2  | 4             |  |   |      | -     |  | + |  | ╉─┼              | — | + | + |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7              | 0   | 0             |  |   |      | -     |  | - |  | +                | _ | + |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -/ 7           | 10  | 0             |  |   |      | <br>- |  |   |  | $\left  \right $ |   | + |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -/             | 12  | 12            |  |   |      | <br>- |  |   |  | $\left  \right $ |   | + |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -11            | -12 | -12           |  |   |      | -     |  |   |  |                  |   | + |   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _ <del>_</del> | -5  | _ <u>_</u> 11 |  |   |      |       |  | + |  | ┢┼               | - | + | + |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0<br>_7       | -3  |               |  |   |      | -     |  |   |  |                  |   | - |   |
| -8 $-6$ $-4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _0             | _1  |               |  |   |      | -     |  |   |  |                  |   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8              |     | _12<br>_A     |  |   |      |       |  |   |  |                  | - | + | + |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -5             | -6  | -9            |  |   |      |       |  |   |  |                  |   | + | + |

- 115 -

Χ

Х

-13

-11

-8 -6

-4 -3

8

10 7

7

10

3

10

-6

-2

Х

-12

-10

-7

8 11

11

-13

-7

-8 0

2

5 7

9

13

у

10

7 10

> 5 3

11

10 7

-5

-7

-12

-12

-8

-9

-8

У

10

4

10 11

4

7

-7

-7

-11

-4

-8

-7

-9

-8

-5

LU3 Aptitude Exam Test Prep Plotting (x,y) Coordinates

| X   | У   |  |  |      |  |   |   |  |   |  |     |   |  |  |   |  |   |
|-----|-----|--|--|------|--|---|---|--|---|--|-----|---|--|--|---|--|---|
| -13 | 4   |  |  |      |  |   |   |  |   |  |     |   |  |  |   |  |   |
| -10 | 11  |  |  |      |  |   |   |  | У |  |     |   |  |  |   |  |   |
| -9  | 7   |  |  |      |  |   |   |  |   |  | Т   |   |  |  |   |  | _ |
| -7  | 4   |  |  |      |  |   |   |  |   |  |     |   |  |  |   |  |   |
| -4  | 7   |  |  |      |  |   |   |  |   |  |     |   |  |  |   |  |   |
| -1  | 7   |  |  |      |  |   |   |  |   |  |     |   |  |  |   |  |   |
| 2   | 11  |  |  |      |  |   |   |  |   |  |     |   |  |  |   |  |   |
| 2   | 3   |  |  |      |  |   |   |  |   |  |     |   |  |  |   |  |   |
| 9   | 5   |  |  |      |  |   |   |  |   |  |     |   |  |  |   |  | _ |
| 9   | 10  |  |  |      |  |   |   |  |   |  |     |   |  |  |   |  |   |
| -9  | -7  |  |  |      |  |   |   |  |   |  |     |   |  |  |   |  |   |
| -7  | -5  |  |  |      |  |   |   |  |   |  |     |   |  |  |   |  |   |
| -1  | -7  |  |  |      |  |   |   |  |   |  | T   |   |  |  |   |  |   |
| 7   | -10 |  |  |      |  |   |   |  |   |  |     |   |  |  |   |  |   |
| 11  | -11 |  |  |      |  |   |   |  |   |  |     |   |  |  |   |  |   |
|     |     |  |  |      |  |   |   |  |   |  |     |   |  |  |   |  |   |
| X   | У   |  |  |      |  |   |   |  |   |  |     |   |  |  |   |  |   |
| -13 | 6   |  |  |      |  |   |   |  |   |  |     |   |  |  |   |  |   |
| -9  | 3   |  |  |      |  |   |   |  |   |  |     |   |  |  |   |  |   |
| -7  | 9   |  |  |      |  |   |   |  |   |  |     |   |  |  |   |  |   |
| -3  | 6   |  |  |      |  |   |   |  |   |  |     |   |  |  |   |  |   |
|     | 1   |  |  | 1 I. |  | I | I |  |   |  | - L | I |  |  | I |  |   |



- 116 -

Consortium for Worker Education

X

Linear Equations

y = -3x + 5

















y = 2x + 6









У y = -x - 3X © MMXIX





















y = -4x + 8y = -3x - 2y = -3x + 5y = -3x - 4y = -2x + 4y = -x + 6y = -x - 13 $y = -\frac{1}{4}x - 10$  $y = -\frac{1}{2}x + 1$  $y=-\frac{1}{2}x-5$  $y = \frac{1}{2}x + 5$ y = x - 4y = 2x + 1y = 2x + 6y = 3x - 4y = 3x + 4y = 4x + 2



y = -4x + 8y = -3x - 2y = -3x + 5y = -3x - 4y = -2x + 4y = -x + 6y = -x - 13 $y = -\frac{1}{4}x - 10$  $y = -\frac{1}{2}x + 1$  $y=-\frac{1}{2}x-5$  $y = \frac{1}{2}x + 5$ y = x - 4y = 2x + 1y = 2x + 6y = 3x - 4y = 3x + 4y = 4x + 2



y = -4x + 8y = -3x - 2

$$y = -3x + 5$$

$$y = -3x - 4$$

$$v = -2x + 4$$

$$y = -x + 6$$

$$y = -x - 13$$
  
 $y = -\frac{1}{4}x - 10$ 

$$y = -\frac{1}{2}x + 1$$
  
 $y = -\frac{1}{2}x - 5$   
 $y = \frac{1}{2}x + 5$   
 $y = x - 4$ 

$$y = 2x + 1$$
$$y = 2x + 6$$
$$y = 3x - 4$$

y = 3x + 3

y = 4x + 2



y = -5x + 2y = -4x - 4y = -3x + 8y = -2x - 12y = -x + 13 $y = -\frac{1}{2}x - 6$  $y = -\frac{1}{2}x + 1$  $y = -\frac{1}{4}x - 8$  $y = \frac{1}{4}x + 10$  $y = \frac{1}{2}x - 3$  $y = \frac{1}{2}x + 5$ y = x - 2y = 2x + 3y = 3x - 4y = 4x + 7y = 5x - 8







| y = -5x + 2             |   |
|-------------------------|---|
| y = -4x - 4             |   |
| y = -3x + 13            |   |
| y = -2x - 12            |   |
| y = -x + 13             |   |
| $y=-\frac{1}{2}x-6$     |   |
| $y = -\frac{1}{2}x + 1$ |   |
| $y = -\frac{1}{4}x - 8$ |   |
| $y = \frac{1}{4}x + 10$ |   |
| $y = \frac{1}{2}x - 3$  |   |
| $y = \frac{1}{2}x + 5$  |   |
| y = x - 2               | ( |
| y = 2x + 3              |   |
| y = 3x - 3              |   |



y = 4x + 7

y = 5x - 8

| <i>y</i> = | -5x | + 8 | 3 |
|------------|-----|-----|---|
| <i>y</i> = | -3x | - 6 | ) |
| <i>y</i> = | -3x | + 2 | ) |

- y = -2x 12
- y = -2x + 9
- y = -x + 10
- $y = -\frac{1}{4x} 8$  $y = \frac{1}{4x} + 3$
- $y = \frac{1}{2}x 3$  $y = \frac{1}{2}x + 4$
- $y = \frac{1}{2x} + 10$ y = x - 5y = 2x - 12y = 2x + 4
- y = 2x + 4 y = 4x - 8 y = 4x + 13y = 5x - 7



y = -5x + 8y = -3x - 6y = -3x + 2y = -2x - 12y = -2x + 9y = -x + 10 $y = -\frac{1}{4}x - 8$  $y = \frac{1}{4}x + 3$  $y = \frac{1}{2}x - 3$  $y = \frac{1}{2}x + 4$  $y = \frac{1}{2}x + 10$ y = x - 5y = 2x - 12y = 2x + 4y = 4x - 8y = 4x + 13y = 5x - 7



y = -5x + 8y = -3x - 6y = -3x + 2y = -2x - 12y = -2x + 9y = -x + 10 $y = -\frac{1}{4}x - 8$  $y = \frac{1}{4}x + 3$  $y = \frac{1}{2}x - 3$  $y = \frac{1}{2}x + 4$  $y = \frac{1}{2}x + 10$ y = x - 5y = 2x - 12y = 2x + 4y = 4x - 8y = 4x + 13

y = 5x - 7



| y = -5x + 8             |   |
|-------------------------|---|
| y = -3x - 6             |   |
| y = -3x + 2             |   |
| y = -2x - 12            |   |
| y = -2x + 9             |   |
| y = -x + 10             |   |
| $y=-\frac{1}{4}x-8$     |   |
| $y = \frac{1}{4}x + 3$  |   |
| $y = \frac{1}{2}x - 3$  |   |
| $y = \frac{1}{2}x + 4$  |   |
| $y = \frac{1}{2}x + 10$ |   |
| y = x - 5               |   |
| y = 2x - 12             |   |
| y = 2x + 4              |   |
| y = 4x - 8              | ( |
| y = 4x + 13             |   |
| y = 5x - 7              |   |



y = -4x - 9y = -3x - 2y = -2x - 4y = -x - 6y = -x + 11 $y = -\frac{1}{2}x + 10$  $y = -\frac{1}{4}x - 5$  $y = \frac{1}{4}x - 6$  $y = \frac{1}{4}x + 5$  $y = \frac{1}{2}x + 3$  $y = \frac{1}{2}x + 7$ y = x - 8y = 2x + 4y = 2x + 12y = 3x - 8y = 4x + 2



y = -4x - 9y = -3x - 2y = -2x - 4y = -x - 7y = -x + 11 $y = -\frac{1}{2}x + 10$  $y = -\frac{1}{4}x - 5$  $y = \frac{1}{4}x - 6$  $y = \frac{1}{4}x + 5$  $y = \frac{1}{2}x + 3$  $y = \frac{1}{2}x + 7$ y = x - 8y = 2x + 4y = 2x + 12y = 3x - 8y = 4x + 2



y = -3x - 2y = -2x - 4

y = -4x - 9

- y = -x 6y = -x + 11
- $y = -\frac{1}{2}x + 10$
- $y = -\frac{1}{4x} 5$  $y = \frac{1}{4x} 6$  $y = \frac{1}{4x} + 5$
- $y = \frac{1}{2}x + 3$





© MMXIX

y = -4x - 9y = -3x - 2y = -2x - 4y = -x - 6y = -x + 11 $y = -\frac{1}{2}x + 10$  $y = -\frac{1}{4}x - 5$  $y = \frac{1}{4}x - 6$  $y = \frac{1}{4}x + 5$  $y = \frac{1}{2}x + 3$  $y = \frac{1}{2}x + 7$ y = x - 8y = 2x + 4y = 2x + 12y = 3x - 8y = 4x + 2


Module #5:

# **Dimensional Analysis**

#### What is Dimensional Analysis?

These questions ask you to think about how one variable relates to or interacts with others in an equation. There are 3 possible variations you may see:

- Positive vs. negative
- Increase vs. decrease
- Try out each answer choice

We'll review approaches for each variation. You will see a total of 5 of these types of questions on your exam.

#### Positive vs. Negative

These questions will provide an equation consisting of multiple variables and will tell you that certain variables are positive or negative. The answer choices will ask you to determine whether the remaining variables are positive or negative.

How to approach:

- Note the information given about which variables are positive and negative directly on your equation.
- Write down whether each remaining variable could be positive or negative before you go to the answer choices.

Q1. 
$$W = \frac{QRX}{T}$$

In the formula above, if *W* is positive and *R* is negative, which of the following statements could be true?

- A. *T* is positive and *Q* and *X* are negative.
- B. *T*, *Q*, and *X* are negative.
- C. *T*, *Q*, and *X* are positive.
- D. *T* and *Q* are negative and *X* is positive.

#### LU3 Aptitude Exam Test Prep Dimensional Analysis

#### Increase vs. decrease

These questions will provide an equation consisting of multiple variables and will tell you that a certain variable is increasing or decreasing, while the others may remain constant. The answer choices will ask you to determine what happens to a given variable as a result.

How to approach:

- Note the information given about which variables are increasing/decreasing/staying the same directly on your equation.
- Write down whether each remaining variable would increase/decrease/remain constant before you go to the answer choices.

Q2. 
$$C = \frac{yz}{wx}$$

In the formula above, if *w* increases while *x*, *y*, and *z* remain constant, which of the following statements about *C* is true?

- A. *C* increases.
- B. C becomes zero.
- C. C decreases.
- D. C does not change.

#### Try out each answer choice

These questions will provide an equation consisting of multiple variables and will ask you to evaluate what happens to one variable if another variable is assigned certain qualities (positive, negative, smaller than, greater than).

How to approach:

- As the name suggests, you will need to try out the condition given in each answer choice to see what happens. This takes a little more time, but you can use the answer choices to help you work efficiently.
- Pick a number for the variable that fits with the new information given and write down the number you try. If the outcome you get doesn't match what the answer choice says, eliminate the choice.
- Be sure to try out all the answer choices, eliminating each time you get a conflicting result.

Q3. 
$$W = \frac{R}{3} - 2$$

Which of the following statements is true for the formula above?

- A. When the value of *R* is greater than 6, *W* is negative.
- B. When the value of *R* is less than 6, *W* is positive.
- C. When the value of *R* is greater than 3, *W* is positive.
- D. When the value of R is less than 6, W is negative.

1. 
$$R = \frac{P}{WV^2}$$

In the formula above, if *R* is positive and W is negative, which of the following statements must be true?

- A. *V* is negative.
- B. V is positive.
- C. *P* is negative.
- D. *P* is positive.

$$= \frac{BC}{D}$$

In the formula above, if B is positive and D is negative, which of the following statements could be true?

- A. A is negative and C is negative.
- B. A is negative and C is positive.
- C. A and C are positive.
- D. A, B, and C are positive.
- 3.

$$K = \frac{H^2}{IMP}$$

In the formula above, if *K* is negative, which of the following statements could be true?

- A. J, M, and P are positive.
- B. J and M are negative and P is positive.
- C. *M* and *P* are negative and *J* is positive.
- D. J and P are positive and M is negative.

4. 
$$v = \frac{wy}{r}$$

In the formula above, if *w* increases while *v* remains constant, which of the following statements could be true?

- A. y and r remain constant.
- B. *y* remains constant and *r* decreases.
- C. *r* remains constant and *y* decreases.
- D. *r* remains constant and *y* increases.
- 5. T = VXY

In the formula above, if *X* remains constant and *T* increases, which of the following statements could be true?

- A. V increases and Y remains constant.
- B. V decreases and Y remains constant.
- C. V and Y decrease.
- D. Y decreases and V remains constant.
- 6.

$$w = \frac{25xr}{st}$$

In the formula above, if *w* and *s* remain constant and *x* decreases, which of the following statements could be true?

- A. r decreases and t remains constant.
- B. *r* increases and *t* remains constant.
- C. *r* and *t* remain constant.
- D. *t* increases and *r* remains constant.

7. x = 5w - 3

Which of the following statements is true for the formula above?

- A. If *w* is greater than 1, then *x* is negative.
- B. If *w* is negative, then *x* is positive.
- C. If *w* is negative, then *x* is negative.
- D. If *w* is greater than 3, then *x* is negative.

$$B = 10 - \frac{C}{4}$$

Which of the following statements is true for the formula above?

- A. If C is greater than 40, then B is positive.
- B. If C is less than 40, then B is negative.
- C. If C is less than 20, then B is negative.

D. If C is greater than 40, then B is negative.

9. 
$$7t - 1 = r$$

Which of the following statements is true for the formula above?

- A. When t > 1, r < 0.
- B. When t = 0, r = 0.
- C. When *t* < 0, *r* > 0.
- D. When *t* < 0, *r* < 0.

10. 
$$f = \frac{gh}{5}$$

Which of the following statements is true for the formula above?

- A. If g and h are each greater than 0, then f is greater than 0.
- B. If gh = 5, then f = 0.
- C. If g and h are each less than 0, then f is less than 0.

D. If g is greater than 0 and h is less than 0, then f is greater than 0. December 4, 2019 10:22 AM - 147 -

1. 
$$z = \frac{wx}{vy}$$

In the formula above, if *w*, *x*, and *y* are all the same sign, which of the following statements could be true?

- A. v, y, and z are negative.
- *B. w*, *v*, and *z* are negative.
- *C. x* and *v* are positive and *z* is negative.
- D. y and z are negative and v is positive.
- $2. \quad G = F^2 H J$

In the formula above, if *H* is negative, which of the following statements could be true?

- A. G and J are positive.
- B. G, F, and J are positive.
- C. G is negative and J is positive.
- D. G and J are negative.
- 3.

$$N = \frac{RS^3}{T}$$

In the formula above, if *N* and *T* are positive, which of the following statements could be true?

- A. R is positive and S is negative.
- B. R is positive and S is positive.
- C. R is negative and S is positive.
- D. R and S have opposite signs.

4. 
$$c = \frac{bde}{af}$$

In the formula above, if *c* decreases and *b*, *d*, and *a* remain constant, which of the following statements could be true?

- A. e increases and f decreases.
- B. e and f both remain constant.
- C. e remains constant and f increases.
- D. f remains constant and e increases.

5. 
$$v = \frac{32x^2}{u}$$

In the formula above, if *x* remains constant, which of the following statements could be true?

- A. If *u* increases, then *v* increases.
- B. If *u* decreases, then *v* decreases.
- C. If *u* decreases, then *v* does not change.

D. If *u* increases, then *v* decreases.

$$6. h = \frac{klm}{4n^2}$$

In the formula above, if n > 1 and increasing, and k and l are constant, which of the following statements could be true?

- A. *m* increases and *h* remains constant.
- B. m decreases and h increases.
- C. m and h remain constant.
- D. *m* remains constant and *h* increases.

$$7. \qquad Q = \frac{R}{4} - 7$$

Which of the following statements is true for the formula above?

- A. When R > 28, Q is negative.
- B. When R > 28, Q is positive.
- C. When R < 28, Q is positive.
- D. When R < 4, Q is positive.
- 8. w = 6t 5

Which of the following statements is true for the formula above?

- A. When t < 5/6, w is negative.
- B. When t > 5/6, w is negative.
- C. When t = 0, *w* is positive.
- D. When t < 1/2, w is positive.
- 9.  $D = C^2 2A$

Which of the following statements is true for the formula above?

- A. If C > 2 and A < 2, D is negative.
- B. If C < 2 and A > 2, D is positive.
- C. If C < -2 and A < 2, D is negative.
- D. If C < -2 and A > 2, D is positive.

$$10. y = 8n - \frac{x}{3}$$

Which of the following statements is true for the formula above?

- A. If x > 3 and n > 2, y is negative.
- B. If x = 3 and n < 0, y is positive.
- C. If x > 3 and n < 1/8, y is negative.

D. If x > 6 and n < 1/4, y is positive. December 4, 2019 10:22 AM - 150 -



Volts

Amps



Volts

Volts

### Mathematical Relationships

**Direct Relationship** 

\_\_\_\_\_

**Inverse Relationship** 

**Dimensional Analysis** 



10



**с** A B D  $\bigcirc$  $\bigcirc$  $\bigcirc$ 1  $\bigcirc$  $\bigcirc$  $\bigcirc$ 2  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 3  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 4  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 5  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 6  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 7  $\bigcirc$  $\bigcirc$  $\bigcirc$ 8  $\bigcirc$  $\bigcirc$  $\bigcirc$ 9

 $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 

Drill 2

 $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 1  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 2  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 3  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 4  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 5  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 6  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 7  $\bigcirc$  $\bigcirc$  $\bigcirc$ 8  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 9  $\bigcirc$  $\bigcirc$  $\bigcirc$ 10  $\bigcirc$ 

В

A

С

D