## Consortium for Worker Education

## IBEW Local 3 Aptitude

## Test Prep Manual

## IBEW Local 3 Aptitude Entrance Exam Test Items

Math 46 minutes<br>\section*{5 Skills}<br>4 Numerical Sequences<br>12 Plug In PEMDAS<br>7 Linear Equations<br>5 Dimensional Analysis<br>5 Invert Independent/Dependent<br>33 Questions

## Reading 51 minutes

4 Technical Passages

- Lunar Tides
- Roadway Construction
- Hydroelectric
- Salt Production
- Computer
- Photosynthesis
- REM Sleep
- 3 Types of Bridges

36 Questions

## Practice Materials

| Learning Express | mechanical-aptitude-tests.com |
| :--- | :--- |
| teach-nology.com | fldoe.org/core/fileparse.php |
| math.about.com | Elevator Mechanic exam (old) |
| eei.org | NYC Sanitation Worker Test Review Guide |
| math-drills.com |  |

## Contents

## Basic Math Refresher. 1

Numerical Sequences ..... 41
Plug In PEMDAS ..... 55
Variables ..... 81
Linear Equations ..... 93
Dimensional Analysis. ..... 123
Reading Comprehension ..... 137

Basic Math Refresher
Fraction/Decimal Conversions Radicals
Signed Numbers

## STUDY RESOURCES FOR LEVEL A

## READING

Achieving TABE Success in Reading Level A Workbook ©2006
Achieving TABE Success in Reading, Level A Reader ©2006

Essential GED ©2002
GED Language Arts, Reading ©2002
GED Science ©2002
GED Social Studies ©2002
TABE Skill Workbooks: Level A, Construct Meaning and Evaluate / Extend Meaning ©2011

TABE Skill Workbooks: Level A, Graphic Information ©2011

TABE Skill Workbooks: Level A, Words in Context and Recall Information © 2011

The Complete GED ©2002
Thumbprint Mysteries, Teacher's Manual, Level Eight ©2001
Top 50 Reading Skills for GED Success © 2006

Top 50 Science Skills for GED Success © 2007

Top 50 Social Studies Skills for GED Success ©2007

Instruction Targeted for TABE Success, Level A (soffware)
MHC Interactive: GED (software)

ISBN

| 978-0-07-704462-6 | Achieving TABE Success in Math, Level A ©2006 |
| :---: | :---: |
| 978-0-07-704466-4 | Calculator Power for the GED ©2002 |
| 978-0-07-252754-4 | Calculator Essentials for the GED © 2003 |
| 978-0-8092-2231-5 | Essential GED ©2002 |
|  | GED Mathematics ©2002 |
| 978-0-8092-2230-8 | GED Mathematics Exercise Book |
| 978-0-8092-2229-2 | ©2002 |
| 978-0-07-660376-3 | Number Power 6: Word Problems © 2000 |
|  | Number Power Review ©2000 |
| 978-0-07-660374-9 | TABE Skill Workbooks: Level A, Decimals and Fractions ©2011 |
| 978-0-07-660375-6 | TABE Skill Workbooks: Level A, Integers and Percents@2011 |
| 978-0-8092-9469-5 | TABE Skill Workbooks: Level A, Numbers, Number Operations, |
|  | Computation in Context, and |
| 978-0-8092-9584-5 | Estimation ©2011 |
| 978-0-07-704481-7 | TABE Skill Workbooks: Level A, Patterns, Functions, and Algebra © 2011 |
| 978-0-07-704475-6 | The Complete GED ©2002 |
|  | The GED Math Problem Solver ©2003 |
| 978-0-07-704472-5 | The Math Problem Solver ©2003 |
| $\begin{array}{r} 978-0-07-655485-0 \\ \text { (site/ LAN) } \end{array}$ | Top 50 Math Skills for GED Success ©2004 |
|  | Instruction Targeted for TABE |
| 978-0-07-250328-9 (single) | Success, Level A (software) |
| 978-0-07-250327-2 | MHC Interactive: GED (software) |


| 978-0-07-704470-1 | Achieving TABE Success in Math, Level A ©2006 | 978-0-07-704470-1 |
| :---: | :---: | :---: |
| 978-0-07-251697-5 | Calculator Power for the GED ©2002 | 978-0-07-251697-5 |
| 978-0-07-286085-6 | Calculator Essentials for the GED ©2003 | 978-0-07-286085-6 |
| 978-0-07-252754-4 | Essential GED ©2002 | 978-0-07-252754-4 |
| 978-0-8092-2232-2 | GED Mathematics ©2002 | 978-0-8092-2232-2 |
| 978-0-8092-2237-7 | GED Mathematics Exercise Book ©2002 | 978-0-8092-2237-7 |
|  | Number Power 3: Algebra, ©2000 | 978-0-8092-2388-6 |
| 978-0-8092-2378-7 | Number Power 6: Word Problems ©2000 | 978-0-8092-2378-7 |
| $978-0-8092-2379-4$ $978-0-07-660380-0$ | Number Power 7: Problem Solving and Test-Taking Strategies, ©2000 | 978-0-8092-2386-2 |
| 978-0-07-660380-0 | Number Power 9: Measurement ©1996 | 978-0-8092-9891-4 |
| 978-0-07-660381-7 | Number Power Review ©2000 | 978-0-8092-2379-4 |
| 978-0-07-660383-1 | TABE Skill Workbooks: Level A, Data Analysis, Statistics \& Probability ©2011 | 978-0-07-660385-5 |
| 978-0-07-660386-2 | TABE Skill Workbooks: Level A, Measurement, Geometry and Spatial Sense ©2011 | 978-0-07-660384-8 |
|  | TABE Skill Workbooks: Level A, Numbers, Number Operations, Computation in Context, and Estimation © 2011 | 978-0-07-660383-1 |
| $\begin{aligned} & 978-0-8092-9469-5 \\ & 978-0-07-252755-1 \end{aligned}$ | TABE Skill Workbooks: Level A, Patterns, Functions, and Algebra ©2011 | 978-0-07-660386-2 |
| 978-0-07-294300-9 | TABE Skill Workbooks: Level A, Problem Solving and Reasoning ©2011 | 978-0-07-660387-9 |
| 978-0-07-297383-9 | The Complete GED ©2002 | 978-0-8092-9469-5 |
| $\begin{array}{r} 978-0-07-655485-0 \\ \text { (site/ LAN) } \end{array}$ | The GED Math Problem Solver ©2003 | 978-0-07-252755-1 |
|  | The Math Problem Solver ©2003 | 978-0-07-294300-9 |
| $978-0-07-250328-9$ <br> (single) | Top 50 Math Skills for GED Success © 2004 | 978-0-07-297383-9 |
| (site) | Instruction Targeted for TABE Success, Level A (software) | $\begin{array}{r} 978-0-07-655485-0 \\ \text { (site/ LAN) } \end{array}$ |
|  | MHC Interactive: GED (software) | 978-0-07-250328-9 (single) 978-0-07-250327-2 |

(site)

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $6 \times 6=$ | 2 |  |  |  |  |  |  |  |  | I |  |  |
| $6 \times 7=$ | 3 |  |  |  |  |  |  |  |  | I |  |  |
| $6 \times 8=$ | 4 |  |  |  |  |  |  |  |  | I |  |  |
| $6 \times 9=$ | 5 |  |  |  |  |  |  |  |  |  |  |  |
| $7 \times 7=$ | 6 |  |  |  |  |  |  |  |  | I |  |  |
| $7 \times 8=$ | 7 |  |  |  |  |  |  |  |  | I |  |  |
| $7 \times 9=$ | 8 |  |  |  |  |  |  |  |  |  |  |  |
| $8 \times 8=$ | 9 |  |  |  |  |  |  |  |  |  |  |  |
| $8 \times 9=$ | 10 |  |  |  |  |  |  |  |  | , |  |  |
| $9 \times 9=$ | 11 |  |  |  |  |  |  |  |  | 1 |  |  |
|  | 12 |  |  |  |  |  |  |  |  | I |  |  |


| $n$ | $n^{2}$ |
| :--- | :--- |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |
| 8 |  |
| 9 |  |
| 10 |  |
| 11 |  |
| 12 |  |

- Make all the denominators equal to the largest one. Multiply the numerators by the same factors.
- If borrowing, take one away from the whole number, add the numerator and denominator, and replace the numerator with the sum.
- Add/subtract the numerators and whole numbers.
- If the resulting fraction is improper, add one to the whole number, and make the numerator the difference between the numerator and the denominator.

$$
7 \frac{25}{16} \quad 2 \frac{5}{8}
$$

Addition
$4 \frac{3 \times 4}{4 \times 4}+3 \frac{13}{16}$

$$
8 \frac{9}{16}
$$

$8 \frac{9}{16}$

If the is/are divisible by

## Then so is

 the numberIf the is/are divisible by

## Multiplication/Division

- Convert mixed fractions to improper fractions.

$$
\begin{gathered}
4 \frac{3}{8} \div 2 \frac{1}{2} \\
\frac{8 \times 4+3}{8} \div \frac{2 \times 2+1}{2} \\
\frac{7}{4} \times \frac{2}{5}_{1}^{8} \\
\frac{7}{4}
\end{gathered}
$$

- If dividing, flip the second fraction.
- Multiply the numerators and denominators.
- Reduce and convert improper to mixed fractions.

$$
5 \frac{1^{9}}{8}-2 \frac{4}{8}
$$

$$
\frac{1 r 3}{\frac{1 r}{7}}=1 \frac{3}{3}
$$


decimal
percentage
60\%
last digit $2 \div 2 = 3 \quad \vee \quad 2 \longdiv { 1 6 , 5 2 6 }$
last two digits


Then so is the number
sum of the digits

$$
\begin{aligned}
& 8+2+6+4+4=24 \\
& 24 \div 3=8 \\
& 3 \begin{array}{r}
27,548 \\
\begin{array}{r}
82,644 \\
\uparrow \uparrow \uparrow \uparrow \uparrow
\end{array}
\end{array}
\end{aligned}
$$

last digit
(4) $72 \div 4=18$
$4 \longdiv { 1 2 , 7 1 8 } \begin{array} { r } { \begin{array} { r } { 5 4 , 8 7 2 } \\ { \uparrow \uparrow } \end{array} } \end{array}$

$0 \quad \checkmark \quad \begin{array}{r}17,868 \\ 89,340 \\ \uparrow\end{array}$
(or is zero)

| Fraction | Decimal | Percent | Fraction | Decimal | Percent |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{8}$ | 0.125 | 12.5 | $\frac{1}{3}$ | $0 . \overline{3}$ | $33 . \overline{3}$ |
| $\frac{1}{4}$ | 0.25 | 25.0 | $\frac{2}{3}$ | $0 . \overline{6}$ | $66 . \overline{6}$ |
| $\frac{3}{8}$ | 0.375 | 37.5 | $\frac{1}{20}$ | 0.05 | 5.0 |
| $\frac{1}{2}$ | 0.5 | 50.0 | $\frac{1}{10}$ | 0.1 | 10.0 |
| $\frac{5}{8}$ | 0.625 | 62.5 | $\frac{3}{20}$ | 0.15 | 15.0 |
| $\frac{3}{4}$ | 0.75 | 75.0 | $\frac{1}{5}$ | 0.2 | 20.0 |
| $\frac{7}{8}$ | 0.875 | 87.5 | $\frac{1}{12}$ | $0.08 \overline{3}$ | $8 . \overline{3}$ |

Finding the Whole
"Of what number?"
$40 \triangle 25 \% \rightarrow 1,000=10$.

$$
\begin{aligned}
& \text { or } 40 \triangle x \\
& \hline x \frac{1}{4} \\
& 40 \boxed{\div} \\
& \hline
\end{aligned}
$$

part $\overleftarrow{\div} \%$ 。
12 is $12.5 \%$ of what number?
12. $\div 12.5$


What number is $25 \%$ of 40 ?



Finding the Percentage
"what percent?"
part $\leftrightarrows$ whole 45 is what \% of 60 ?
45. $\div 60$.
$\frac{.75}{60 . \longdiv { 4 5 . 0 0 }}=75 . \%$
or $\quad \frac{45 \div 15}{60 \div 15}=\frac{3}{4}=75 . \%$


| 1 | / 64 | 0.015625 | 17 | 164 | 0.265625 | 33 | / 64 | 0.515625 | 49 | / 64 | 0.765625 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | / 32 | 0.03125 | 9 | / 32 | 0.28125 | 17 | / 32 | 0.53125 | 25 | / 32 | 0.78125 |
| 3 | / 64 | 0.046875 | 19 | / 64 | 0.296875 | 35 | 164 | 0.546875 | 51 | / 64 | 0.796875 |
| 1 | / 16 | 0.0625 | 5 | / 16 | 0.3125 | 9 | / 16 | 0.5625 | 13 | / 16 | 0.8125 |
| 5 | 164 | 0.078125 | 21 | / 64 | 0.328125 | 37 | 164 | 0.578125 | 53 | 164 | 0.828125 |
| 3 | / 32 | 0.09375 | 11 | / 32 | 0.34375 | 19 | / 32 | 0.59375 | 27 | / 32 | 0.84375 |
| 7 | 164 | 0.109375 | 23 | / 64 | 0.359375 | 39 | 164 | 0.609375 | 55 | / 64 | 0.859375 |
| 1 | 18 | 0.125 | 3 | 18 | 0.375 | 5 | 18 | 0.625 | 7 | 18 | 0.875 |
| 9 | / 64 | 0.140625 | 25 | / 64 | 0.390625 | 41 | 164 | 0.640625 | 57 | / 64 | 0.890625 |
| 5 | / 32 | 0.15625 | 13 | / 32 | 0.40625 | 21 | / 32 | 0.65625 | 29 | / 32 | 0.90625 |
| 11 | 164 | 0.171875 | 27 | / 64 | 0.421875 | 43 | / 64 | 0.671875 | 59 | / 64 | 0.921875 |
| 3 | / 16 | 0.1875 | 7 | / 16 | 0.4375 | 11 | / 16 | 0.6875 | 15 | / 16 | 0.9375 |
| 13 | / 64 | 0.203125 | 29 | 164 | 0.453125 | 45 | 164 | 0.703125 | 61 | $1 / 64$ | 0.953125 |
| 7 | / 32 | 0.21875 | 15 | / 32 | 0.46875 | 23 | / 32 | 0.71875 | 31 | / 32 | 0.96875 |
| 15 | 164 | 0.234375 | 31 | / 64 | 0.484375 | 47 | / 64 | 0.734375 | 63 | / 64 | 0.984375 |
|  |  | $0.25$ |  | $12$ | $0.5$ |  | $/ 4$ | $0.75$ |  | $/ 1$ | $1$ <br> © $M M$ |

Fractions That Convert to 1, 2 or 3 Decimals

| $1 / 50$ | 0.02 | $11 / 50$ | 0.22 | $21 / 50$ | 0.42 | $31 / 50$ | 0.62 | $41 / 50$ | 0.82 |
| :--- | ---: | :--- | ---: | :--- | :---: | :--- | :---: | :--- | ---: |
| $1 / 40$ | 0.025 | $9 / 40$ | 0.225 | $17 / 40$ | 0.425 | $25 / 40$ | 0.625 | $33 / 40$ | 0.825 |
| $1 / 25$ | 0.04 | $5 / 20$ | 0.25 | $11 / 25$ | 0.44 | $13 / 20$ | 0.65 | $21 / 25$ | 0.84 |
| $1 / 20$ | 0.05 | $13 / 50$ | 0.26 | $9 / 20$ | 0.45 | $33 / 50$ | 0.66 | $17 / 20$ | 0.85 |
| $3 / 50$ | 0.06 | $11 / 40$ | 0.275 | $23 / 50$ | 0.46 | $27 / 40$ | 0.675 | $43 / 50$ | 0.86 |
| $3 / 40$ | 0.075 | $7 / 25$ | 0.28 | $19 / 40$ | 0.475 | $17 / 25$ | 0.68 | $35 / 40$ | 0.875 |
| $\mathbf{1 / 1 0}$ | $\mathbf{0 . 1}$ | $\mathbf{3 / 1 0}$ | $\mathbf{0 . 3}$ | $\mathbf{5 / 1 0}$ | $\mathbf{0 . 5}$ | $\mathbf{7 / 1 0}$ | $\mathbf{0 . 7}$ |  |  |
| $\mathbf{3 / 2 5}$ | 0.12 | $13 / 40$ | 0.325 | $13 / 25$ | 0.52 | $29 / 40$ | 0.725 | $\mathbf{9 / 1 0}$ | $\mathbf{0 . 9}$ |
| $5 / 40$ | 0.125 | $17 / 50$ | 0.34 | $21 / 40$ | 0.525 | $37 / 50$ | 0.74 | $23 / 25$ | 0.92 |
| $7 / 50$ | 0.14 | $7 / 20$ | 0.35 | $27 / 50$ | 0.54 | $15 / 20$ | 0.75 | $37 / 40$ | 0.925 |
| $\mathbf{3 / 2 0}$ | 0.15 | $9 / 25$ | 0.36 | $11 / 20$ | 0.55 | $19 / 25$ | 0.76 | $19 / 50$ | 0.94 |
| $7 / 40$ | 0.155 | $15 / 40$ | 0.375 | $23 / 40$ | 0.575 | $31 / 40$ | 0.755 | $39 / 40$ | 0.95 |
| $9 / 50$ | 0.18 | $19 / 50$ | 0.38 | $29 / 50$ | 0.58 | $39 / 50$ | 0.78 | $49 / 50$ | 0.95 |


| $1 / 5$ | 0.2 | $2 / 5$ | 0.4 | $3 / 5$ | 0.6 | $4 / 5$ | 0.8 | $50 / 50$ | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Repeating Decimals

| $1 / 30$ | 0.0333 | $7 / 15$ | 0.4666 | $1 / 9$ | 0.1111 | $1 / 11$ | 0.0909 |
| :--- | ---: | :--- | ---: | :--- | ---: | :--- | :--- |
| $1 / 15$ | 0.0666 | $8 / 15$ | 0.5333 | $2 / 9$ | 0.2222 | $2 / 11$ | 0.1818 |
| $1 / 12$ | 0.0833 | $17 / 30$ | 0.5666 | $\mathbf{1} / \mathbf{3}$ | $\mathbf{0 . 3 3 3 3}$ | $3 / 11$ | 0.2727 |
| $2 / 15$ | 0.1333 | $7 / 12$ | 0.5833 | 0.633 | $\mathbf{1} / 9$ | 0.4444 | $4 / 11$ |
| $1 / 6$ | 0.1666 | $19 / 30$ | 0.3636 |  |  |  |  |
| $1 / 1 / 15$ | 0.7333 | $4 / 9$ | 0.365 |  |  |  |  |
| $7 / 30$ | 0.2333 | $23 / 30$ | 0.7666 | $5 / 9$ | 0.5555 | $5 / 11$ | 0.4545 |
| $4 / 15$ | 0.2666 | $5 / 6$ | 0.8333 | $\mathbf{2 / 3}$ | $\mathbf{0 . 6 6 6 6}$ | $6 / 11$ | 0.5454 |
| $11 / 30$ | 0.3666 | $13 / 15$ | 0.8666 | $7 / 9$ | 0.7777 | $7 / 11$ | 0.6363 |
| $5 / 12$ | 0.4166 | $11 / 12$ | 0.9166 | $8 / 9$ | 0.8888 | $8 / 11$ | 0.7272 |
|  |  | $14 / 15$ | 0.9333 | $8 / 9$ | $9 / 11$ | 0.8181 |  |
|  |  | $29 / 30$ | 0.9666 |  |  | $10 / 11$ | 0.9090 |

## Irrational Fractions

| $1 / 17$ | 0.058823529411764 | 9/17 | 0.529411764705882 |
| :---: | :---: | :---: | :---: |
| $1 / 14$ | 0.071428571428571 | $7 / 13$ | 0.538461538461538 |
| $1 / 13$ | 0.076923076923076 | $4 / 7$ | 0.571428571428571 |
| 2/17 | 0.117647058823529 | 10/17 | 0.588235294117647 |
| $1 / 7$ | 0.142857142857143 | $8 / 13$ | 0.615384615384615 |
| $2 / 13$ | 0.153846153846154 | $9 / 14$ | 0.642857142857143 |
| $3 / 17$ | 0.176470588235294 | $11 / 17$ | 0.647058823529412 |
| $3 / 14$ | 0.214285714285714 | 9/13 | 0.692307692307692 |
| 3/13 | 0.230769230769231 | 12 / 17 | 0.705882352941177 |
| 4/17 | 0.235294117647059 | $5 / 7$ | 0.714285714285714 |
| $2 / 7$ | 0.285714285714286 | 13/17 | 0.764705882352941 |
| $5 / 17$ | 0.294117647058824 | 10/13 | 0.769230769230769 |
| 4/13 | 0.307692307692308 | $11 / 14$ | 0.785714285714286 |
| $6 / 17$ | 0.352941176470588 | $14 / 17$ | 0.823529411764706 |
| $5 / 14$ | 0.357142857142857 | $11 / 13$ | 0.846153846153846 |
| 5/13 | 0.384615384615385 | $6 / 7$ | 0.857142857142857 |
| $7 / 17$ | 0.411764705882353 | 15 / 17 | 0.882352941176471 |
| $3 / 7$ | 0.428571428571429 | 12 / 13 | 0.923076923076923 |
| $6 / 13$ | 0.461538461538462 | $13 / 14$ | 0.928571428571429 |
| $8 / 17$ | 0.470588235294118 | 16/17 | 0.941176470588235 |



## ASMD of Signed Numbers



- Use the Truth Table to multiple/divide two numbers.
- If two signs are not separated by a number, use the Truth Table to simplify the operations.

$$
\begin{aligned}
-5 \times-4 & =20 \\
-20 \div 4 & =-5 \\
-2-(-5) & =-2+5 \\
2+(-5) & =2-5
\end{aligned}
$$



- If both numbers are the same sign, ADD the numbers, and keep the sign.

$$
\begin{aligned}
5+3 & =8 \\
-5-3 & =-8
\end{aligned}
$$

- If the numbers have different signs, SUBTRACT the numbers, and keep the sign of the larger number.

$$
\begin{aligned}
5-3 & =2 \\
-5+3 & =-2
\end{aligned}
$$

## ASMD of Decimal Numbers

|  |  |  | 6.803 | 23.5 |
| :---: | :---: | :---: | :---: | :---: |
| $\Psi$ |  | Align the numbers so that the decimals form a vertical line. Add/subtract the numbers as if they were whole numbers. Place the decimal in the answer so that it lines up with the other numbers. | $+\frac{14: 15}{20: 953}$ | $\begin{array}{r}9: 82 \\ \hline 13: 68\end{array}$ |
|  |  |  | 1.125 $\times \quad 3.14$ | 3 left <br> 2 left |
| , | - Right justify the two factors and multiply as if they were whole numbers. Move the product's decimal to the left the total number of times it was moved in the factors. |  | $\begin{aligned} & \frac{\sim 4}{4500} \\ & 1125 \\ & 3375 \end{aligned}$ |  |
|  |  |  | 3.53250 | 5 left |
| $\stackrel{\square}{-}$ |  | Move the decimal in the divisor to the end of the number. Move the decimal in the dividend the same number of places, filling with zeros if necessary. Align the decimal in the quotient above the dividend's decimal. | $\begin{array}{r} 1 . 2 5 \longdiv { 1 0 . 5 0 } \\ 1 2 5 \longdiv { 1 , 0 5 0 } \end{array}$ | $\begin{aligned} & 2 \text { right } \\ & \frac{8 \cdot 4}{0!0} \end{aligned}$ |

## Changing Decimals to Fractions

To change a decimal to a fraction:

1. Write the digits of the decimal as the top number of a fraction.
2. Write the decimal's name as the bottom number of the fraction.

Example: Change 0.018 to a fraction.

1. Write 18 as the top of the fraction:
2. Since there are three places to the right of the decimal, it's thousandths.
3. Write 1,000 as the bottom number:
4. Reduce by dividing 2 into the top and bottom numbers:
$\frac{18 \div 2}{1,000 \div 2}=\frac{9}{500}$

Now try this sample question. Step-by-step solutions to sample questions are at the end of the lesson.

## Sample Question 1

Change the mixed decimal 2.7 to a fraction.

## Practice

Change these decimals or mixed decimals to fractions in lowest terms.

| 15. 0.1 | 19. 0.005 | 23. 4.15 |
| :--- | :--- | :--- |
| 16. 0.03 | 20. 0.125 | 24. 123.45 |
| 17. 0.75 | 21. 0.046 |  |
| 18. 0.6 | 22. 5.04 |  |

## Changing Fractions to Decimals

To change a fraction to a decimal:

1. Set up a long division problem to divide the bottom number (the divisor) into the top number (the dividend) —but don't divide yet!
2. Put a decimal point and a few zeros on the right of the divisor.
3. Bring the decimal point straight up into the area for the answer (the quotient).
4. Divide.

Example: Change $\frac{3}{4}$ to a decimal.

1. Set up the division problem: $4 \sqrt{3}$
2. Add a decimal point and 2 zeroes to the divisor (3):
3. Bring the decimal point up into the answer:
4. Divide:

Thus, $\frac{3}{4}=0.75$, or 75 hundredths.

## Practice

Change these fractions to decimals.
_ 25. $\frac{2}{5}$
26. $\frac{1}{4}$
27. $\frac{7}{10}$
28. $\frac{1}{6}$
29. $\frac{5}{7}$
30. $\frac{7}{8}$
31. $\frac{4}{9}$
32. $3 \frac{2}{7}$
33. $4 \frac{3}{4}$
34. $2 \frac{1}{5}$

## Equivalent Forms Practice Problems

## Problem Set 1

In problems 1 though 3, express the following fractions as decimals. In problems 4 and 5, choose the best answer for the question.

1. $\frac{4}{5}$
A. 0.08
B. 1.25
C. 0.8
D. 0.125
2. $\frac{3}{8}$
A. 0.375
B. 0.266
C. $2 . \overline{66}$
D. 0.0375
3. $\frac{17}{20}$
A. 0.085
B. 0.1176 ...
C. 1.176...
D. 0.85
4. Which of the following is equivalent to 0.42 ?
A. $\frac{1}{42}$
B. $\frac{42}{50}$
C. $\frac{21}{50}$
D. $\frac{42}{10}$
5. Which of the following is equivalent to 0.3 ?
A. $\frac{3}{100}$
B. $\frac{3}{50}$
C. $\frac{3}{10}$
D. $\frac{3}{5}$

For problems 6 through 10, express the following numbers as a percentage.
6. $\frac{7}{10}$
A. 7\%
B. $0.7 \%$
C. $70 \%$
D. $700 \%$
7. $\frac{27}{50}$
A. $27 \%$
B. $0.27 \%$
C. $5.4 \%$
D. $54 \%$
8. 0.28
A. $2.8 \%$
B. $280 \%$
C. . $28 \%$
D. $28 \%$
9. 0.6
A. $6 \%$
B. $0.06 \%$
C. $60 \%$
D. $0.6 \%$
10. 0.347
A. $34.7 \%$
B. $0.347 \%$
C. $3.47 \%$
D. $347 \%$

## Equivalent Form Practice Problems

## Problem Set 1

In questions 11-15, change the percentage into an equivalent decimal or fraction.
11. $81 \%$
A. 81
B. 8.1
C. 0.81
D. 0.081
12. $6 \%$
A. $\frac{3}{500}$
B. $\frac{3}{50}$
C. $\frac{3}{5}$
D. $\frac{3}{1000}$
13. $500 \%$
A. 0.5
B. 0.05
C. 5
D. 50
14. $11 \%$
A. 1.1
B. 0.11
C. 11
D. 0.011
15. $8 \%$
A. $\frac{2}{25}$
B. $\frac{1}{12}$
C. $\frac{4}{5}$
D. $\frac{1}{25}$
16. Which is the least number?
A. 0.6
B. 0.1
C. 0.06
D. 0.01
17. Which is the greatest number?
A. 1.47
B. 2.78
C. 0.278
D. 14.7
18. Put these in order from least to greatest.
A. $0.365,0.3065,0.37,3.7$
B. $3.7,0.37,0.365,0.3065$
C. $0.3065,0.365,0.37,3.7$
D. $3.7,0.37, .3065,0.365$
19. Put these in order from greatest to least.
A. $0.01,0.1,1,0.1256$
B. $1,0.1256,0.1,0.01$
C. $0.1256,0.1,1,0.01$
D. $1,0.1,0.1256,0.01$
20. Which of these is the least number?
A. $50 \%$
B. 5
C. 50
D. 0.6

## Equivalent Form Practice Problems

## Problem Set 2

For problems 1 through 3, express the fractions as decimals. For questions 4 and 5 , choose the best answers.

1. $\frac{3}{5}$
A. 0.6
B. 0.06
C. $1 . \overline{66}$
D. $0 . \overline{66}$
2. $\frac{5}{8}$
A. 0.0625
B. 0.625
C. 0.16
D. 1.6
3. $\frac{9}{20}$
A. $2 . \overline{22}$
B. 0.45
C. 0.045
D. $0 . \overline{22}$
4. Which of the following is equivalent to 0.68 ?
A. $\frac{68}{10}$

16
B. 25
C. $\frac{1}{68}$
D. $\frac{34}{50}$
5. Express 0.2 as a fraction.
A. $\frac{2}{100}$
B. $\frac{2}{50}$
C. $\frac{2}{10}$
D. $\frac{1}{50}$

For problems 6 through 10, express the numbers as a percentage.
6. $\frac{3}{10}$
A. $3 \%$
B. $30 \%$
C. $0.3 \%$
D. $0.003 \%$
7. $\frac{31}{50}$
A. $62 \%$
B. $6.2 \%$
C. $31 \%$
D. $0.31 \%$

## Equivalent Form Practice Problems

Problem Set 2
10. 0.078
A. $78 \%$
B. $0.78 \%$
C. $7.8 \%$
D. $0.078 \%$
A. $0.59 \%$
B. $59 \%$
C. $5.9 \%$
D. $590 \%$
9. 0.9
A. $90 \%$
B. $9 \%$
C. $0.9 \%$

In questions 11-15, change the percentage into an equivalent decimal or fraction.
11. $72 \%$
A. $\frac{18}{25}$
B. $\frac{9}{12}$
C. $\frac{9}{25}$
D. $\frac{18}{250}$
12. $7 \%$
A. 0.07
B. 0.7
C. 7
D. 0.007
13. $320 \%$
A. 32
B. 0.32
C. 3.2
D. 0.09
D. 0.032
14. $13 \%$
A. 13
B. 0.13
C. 1.3
D. 0.013
15. $6 \%$
A. $\frac{3}{50}$
B. $\frac{2}{12}$
C. $\frac{3}{5}$
D. $\frac{3}{25}$

## Equivalent FormsPractice Problems

## Problem Set 2

16. Which of these is the greatest number?
A. 0.205
B. 0.0205
C. 0.0250
D. 0.250
17. Which is the least number?
A. 0.03
B. 0.1
C. 0.3
D. 0.01
18. Which is the greatest number?
A. 0.47
B. 0.047
C. 0.0475
D. 0.468
19. Arrange these in order from greatest to least.
A. $0.04,1.3,0.18,0.388$
B. $0.18,1.3,0.388,0.04$
C. $0.388,0.18,1.3,0.04$
D. $1.3,0.388,0.18,0.04$
20. Arrange these in order from least to greatest.
A. $0.201,0.19,1.2,0.21$
B. $0.19,0.201,0.21,1.2$
C. $1.2,0.19,0.201,0.19$
D. $0.21,1.2,0.201,0.19$

## Convert Fractions to Decimals

The first number goes inside the Division Box

1. $3 / 32=$
2. $41 / 64=$
3. $7 / 32=$
4. $1 / 64=$
5. $61 / 64=$
6. $49 / 50=$
7. $1 / 10=$
8. $27 / 40=$
9. $1 / 10=$
10. $21 / 40=$
11. $3 / 11=$
12. $5 / 6=$
13. $1 / 14=$
14. $5 / 7=$
15. $5 / 14=$
16. $3 / 7=$
17. $5 / 7=$

## Convert Decimals to Fractions

## Look for Patterns

1. $0.46875=$
2. $0.890625=$
3. $0.609375=$
4. $0.375=$
5. $0.6875=$
6. $0.984375=$
7. $0.703125=$
8. $0.796875=$
9. $0.65625=$
10. $0.546875=$
11. $0.65=$
12. $0.825=$
13. $0.525=$
14. $0.04=$
15. $0.675=$
16. $1.566666667=$
17. $0.888888889=$
18. $0.777777778=$
19. $1.566666667=$
20. $0.133333333=$

## ASMD of Decimals

1. $4.06+2.31=$
2. $2.2+4.97=$
3. $3.42+1$ =
4. $2.973+2.5=$
5. $3.8+2.83=$
6. $4.31-1.71=$
7. $4.154-2.7=$
8. $3.915-1.65=$
9. $3.25-1.302=$
10. $3.7-1.11=$

## Radicals

When you think of a square, you probably think of a box-shaped figure with four equal sides like the one shown here. As you'll see in this lesson, that's a good way to think about squares and square roots.


## FINDING SQUARES

A square of a number is just the number multiplied by itself. So the square of 4 is $4 \times 4=16$. How does this relate to a square-shaped figure? The area of a square is the amount of space a square takes up. To calculate the area of a square, you multiply the length of one side by itself. That is why the area of a square is sometimes written as $s$ squared, or $s^{2}$. Any time a number is written with a 2 raised after it, it means to multiply the number by itself, or to square the number.

Example: What is the square of 30 ?
To find the square of a number, multiply it by itself. Thus, the square of 30 is $30 \times 30$, or 900 .

Example: Find $9^{2}$.
When a number is followed by a raised 2 , you should square it. Thus, $9^{2}=9 \times 9=81$.

## FINDING SQUARE ROOTS

To find a square root of a number you have to think backwards. You will be given the area of an entire square. The answer to the problem, or square root, is the length of only one side of the square. That is, the square root of a number is a number that when multiplied by itself equals the number given in the problem. Keep reading. It's not as tricky as it sounds.

You may have seen this symbol before: $\sqrt{ }$. This is the symbol for a square root. When it is written over a number, you are being asked to find the square root of that number.

## Example: What is $\sqrt{25}$ ?

The problem is asking you to calculate the square root of 25 . Ask yourself what number multiplied by itself equals 25 . If you have memorized the list of common squares, this problem is not very hard. Even if you haven't learned the list of common squares yet, though, you can figure this problem out: $5 \times 5$ $=25$. So the square root of 25 is 5 .

## Radicals

| Number | Square | Calculation | Number | Square | Calculation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | $1 \times 1$ | 11 |  | $11 \times 11$ |
| 2 |  | $2 \times 2$ | 12 |  | $12 \times 12$ |
| 3 |  | $3 \times 3$ | 13 |  | $13 \times 13$ |
| 4 |  | $4 \times 4$ | 14 |  | $14 \times 14$ |
| 5 |  | $5 \times 5$ | 15 |  | $15 \times 15$ |
| 6 |  | $6 \times 6$ | 16 |  | $16 \times 16$ |
| 7 |  | $7 \times 7$ | 17 |  | $17 \times 17$ |
| 8 |  | $8 \times 8$ | 18 |  | $18 \times 18$ |
| 9 |  | $9 \times 9$ | 19 |  | $19 \times 19$ |
| 10 |  | $10 \times 10$ | 20 |  | $20 \times 20$ |


| Number | Square | Calculation | Number | Square | Calculation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 21 |  | $21 \times 21$ | 25 |  | $25 \times 25$ |
| 22 |  | $22 \times 22$ | 26 |  | $26 \times 26$ |
| 23 |  | $23 \times 23$ | 27 |  | $27 \times 27$ |
| 24 |  | $24 \times 24$ | 28 |  | $28 \times 28$ |

If you aren't sure what the square root of a given square is, make a guess. Then multiply the number by itself. If it's not the correct square root, at least now you can make a better guess the second time!


In this lesson, you are working only with whole numbers. However, sometimes math problems will ask you to calculate square roots that are not whole numbers. Read the question carefully. You might be asked to round your answer to a certain place. In other cases, you might be able to use a calculator to solve the problem.

EXAMPLE: What is $\sqrt{45}$ ?
The problem is asking you what number equals 45 when multiplied by itself. You know that $6^{2}=36$ and $7^{2}=49$. Thus, the square root of 45 is a number between 6 and 7. You can find a more precise answer using a calculator.

## Practice

Solve each problem.

1. $2^{2}$
2. $9^{2}$
3. $16^{2}$
4. $12^{2}$
5. $6^{2}$
6. $5^{2}$
7. $15^{2}$
8. $8^{2}$
9. $3^{2}$
10. $13^{2}$
11. $7^{2}$
12. $26^{2}$
13. $35^{2}$
14. $25^{2}$
15. $91^{2}$
16. $\sqrt{64}$
17. $\sqrt{36}$
18. $\sqrt{49}$
19. $\sqrt{81}$
20. $\sqrt{361}$
21. $\sqrt{529}$
22. $\sqrt{625}$
23. $\sqrt{256}$
24. $\sqrt{1,600}$
25. $\sqrt{441}$
26. $\sqrt{0}$
27. $\sqrt{3,600}$

Find the Square or Square Root of the Number

1. $27^{2}$
2. $15^{2}$
3. $3^{2}$
4. $5^{2}$
5. $30^{2}$
6. $2^{2}$
7. $3^{2}$
8. $25^{2}$
9. $20^{2}$
10. $3^{2}$
$11 . \sqrt{529}$
11. $\sqrt{81}$
$13 . \sqrt{49}$
$14 \cdot \sqrt{900}$
12. $\sqrt{49}$
13. $\sqrt{64}$
14. $\sqrt{1}$
$18 \cdot \sqrt{576}$
15. $\sqrt{784}$
$20 \cdot \sqrt{81}$

## Positive and Negative Numbers

Positive and negative numbers, also called signed numbers, can be visualized as points along the number line:


Numbers to the left of 0 are negative and those to the right are positive. Zero is neither negative nor positive. If a number is written without a sign, it is assumed to be positive. On the negative side of the number line, numbers with bigger values are actually smaller. For example, -5 is less than -2 . You come into contact with negative numbers more often than you might think; for example, very cold temperatures are recorded as negative numbers.

As you move to the right along the number line, the numbers get larger. Mathematically, to indicate that one number, say 4, is greater than another number, say -2 , the greater than sign " $>$ " is used:

$$
4>-2
$$

Conversely, to say that -2 is less than 4 , we use the less than sign, " $<$ ":

$$
-2<4
$$

## Arithmetic with Positive and Negative Numbers

The following table illustrates the rules for doing arithmetic with signed numbers. Notice that when a negative number follows an operation (as it does in the second example), it is enclosed in parentheses to avoid confusion.

| RULE | EXAMPLE |
| :---: | :---: |
| ADDITION |  |
| If both numbers have the same sign, just add them. The answer has the same sign as the numbers being added. | $\begin{array}{rr} 3+5 & =8 \\ -3+(-5) & =-8 \end{array}$ |
| If both numbers have different signs, subtract the smaller number from the larger. The answer has the same sign as the larger number. | $\begin{aligned} -3+5 & =2 \\ 3+(-5) & =-2 \end{aligned}$ |
| If both numbers are the same but have opposite signs, the sum is zero. | $3+(-3)=0$ |
| SUBTRACTION |  |
| To subtract one number from another, change the sign of the number to be subtracted and then add as above. | $\begin{aligned} 3-5 & =3+(-5)=-2 \\ -3-5 & =-3+(-5)=-8 \\ -3-(-5) & =-3+5=2 \end{aligned}$ |

## Signed Numbers

## RULE EXAMPLE

## MULTIPLICATION

| Multiply the numbers together. If both numbers have the same | $\left.\begin{array}{rl}3 \times & =15 \\ \text { sign, the answer is positive; otherwise, it is negative. } & -3 \times(-5)=15 \\ -3 \times 5 & =-15 \\ 3 \times(-5) & =-15 \\ & 3 \times 0\end{array}\right)=0$ |
| :--- | ---: |

## DIVISION

| Divide the numbers. If both numbers have the same sign, | $15 \div 3$ $=5$ <br> the answer is positive; otherwise, it is negative. $-15 \div(-3)=5$ <br> $15 \div(-3)$ $=-5$ <br> $-15 \div 3$ $=-5$ |
| :--- | ---: |
|  |  |
| If the top number is zero, the answer is zero. | $0 \div 3=0$ |

## Practice

Jse the previous table to help you solve these problems with signed numbers.
$\qquad$ 1. $2+(-3)=$ ? $\qquad$ 6. $-8 \div 4=$ ?
$\qquad$ 2. $-2+(-3)=$ ?
3. $4-(-3)=$ ?
$\qquad$ 7. $9 \div(-1.2)=$ ?
$\qquad$
$\qquad$ 8. $-\frac{3}{5}-1=$ ?
$\qquad$ 4. $-8.5-(-1.7)=$ ? $\qquad$ 9. $\frac{5}{7} \times\left(-\frac{7}{10}\right)=$ ?
5. $-3 \times(-5)=$ ?
10. $\left(-\frac{8}{3}\right) \div\left(-\frac{2}{9}\right)=$ ?

## Multiplying \& Dividing Signed Numbers

## Set 1

1. $-4 \cdot 4=$
A. 16
B. -16
C. 1
D. -1
E. None of the above
2. $-5 \cdot-5=$
A. -25
B. 30
C. -30
D. 25
E. None of the above
3. $-9 \cdot-3=$
A. -27
B. $\frac{1}{3}$
C. 27
D. $-\frac{1}{3}$
$E$. None of the above
4. $8 \cdot-4=$
A. 32
B. 2
C. -32
D. -2
E. None of the above
5. $-2 \cdot 12=$
A. -24
B. $\frac{1}{6}$
C. 6
D. 24
E. None of the above
6. $(-7)(-7)=$
A. 49
B. 1
C. -1
D. -49
E. None of the above
7. $20 \cdot-2=$
A. 40
B. 10
C. -10
D. -40
E. None of the above
8. $-6 \cdot-7 \cdot-1=$ A. 42
B. -42
C. -13
D. 13
E. None of the above
9. $-8 \div 4=$
A. 2
B. $\frac{1}{2}$
C. $-\frac{1}{2}$
D. -2
E. None of the above
10. $32 \div-8=$
A. -4
B. 4
C. $\frac{1}{4}$
D. $-\frac{1}{4}$
E. None of the above
11. $\frac{-56}{8}=$
A. 7
B. $\frac{1}{7}$
C. -7
D. $-\frac{1}{7}$
E. None of the above

## Multiplying \& Dividing Signed Numbers

## Set 1

12. $-25 \div 5=$
A. $\frac{1}{5}$
B. $-\frac{1}{5}$
C. 5
D. -5
E. None of the above
13. $\frac{45}{-9}=$
A. $\frac{1}{5}$
B. $-\frac{1}{5}$
C. 5
D. 6
E. None of the above
14. $2 \div-3=$
A. $-1 \frac{1}{3}$
B. $\frac{2}{3}$
C. $-\frac{2}{3}$
D. $1 \frac{1}{3}$
E. None of the above
15. $\frac{-36}{-6}=$
A. 6
B. -6
C. $\frac{1}{6}$
D. $-\frac{1}{6}$
E. None of the above
16. $-48 \div-6=$
A. -8
B. 8
C. $\frac{1}{8}$
D. $-\frac{1}{8}$
E. None of the above

## Multiplying \& Dividing Signed Numbers

Set 2

1. $-3 \cdot 3=$
A. 9
B. 1
C. -9
D. -1
E. None of the above
2. $-6 \cdot-6=$
A. -36
B. 36
C. 1
D. -1
E. None of the above
3. $(-8)(-7)=$
A. -56
B. 48
C. -48
D. 56
E. None of the above
4. $7 \cdot-5=$
A. 35
B. -25
C. 25
D. -35
E. None of the above
5. $-3 \cdot 15=$
A. -45
B. 45
C. 35
D. -35
E. None of the above
6. $(-8)(-8)=$
A. -64
B. 64
C. 1
D. -1
E. None of the above
7. $30 \cdot-3=$
A. 10
B. -90
C. -10
D. 90
E. None of the above
8. $-1 \cdot-8 \cdot-6=$ A. 54
B. 48
C. -48
D. -54
E. None of the above
9. $-10 \div 5=$
A. $\frac{1}{2}$
B. $-\frac{1}{2}$
C. 2
D. -2
E. None of the above
10. $42 \div-6=$
A. -7
B. 7
C. 6
D. -6
E. None of the above
11. $\frac{-72}{9}=$
A. 8
B. $\frac{1}{8}$
C. -8
D. $-\frac{1}{8}$
E. None of the above

## Multiplying \& Dividing Signed Numbers

## Set 2

12. $-36 \div 6=$
A. $\frac{1}{6}$
B. 6
C. -6
D. $-\frac{1}{6}$
E. None of the above
13. $\frac{-42}{-7}=\quad$ A. $\frac{1}{6}$
B. -6
C. 6
D. $-\frac{1}{6}$
E. None of the above
14. $-4 \div 12$
A. $-\frac{1}{3}$
B. $1 \frac{1}{3}$
C. 3
D. -3
E. None of the above
15. $\frac{-60}{-5}=$
A. -12
B. 12
C. $\frac{1}{12}$
D. $-\frac{1}{12}$
E. None of the above
16. $54 \div-6=$ A. 9
B. 8
C. $\frac{1}{9}$
D. $-\frac{1}{8}$
E. None of the above

In each of the following problems, represent each loss as a negative number and a gain as a positive number.
17. Susan lost 15 pounds over a period of five weeks. What was her average weekly weight loss?
A. 3
B. -3
C. 5
D. -5
18. The temperature dropped 25 degrees in the last 5 hours. What was the average drop in temperature each hour?
A. 5
B. -5
C. 25
D. -25
19. John owns shares of a public utility stock. The value of his stock dropped $\$ 500$ in value last year. If each share of stock dropped \$1.25, how many shares does John own?
A. 200
B. -200
C. 400
D. -400
20. If a negative number is multiplied by another negative an odd ( $1,3,5, \ldots$ ) number of times, the product will always be
A. Positive
B. Negative

## Adding \& Subtracting Signed Numbers

1. $-8+-3=$
A. -5
B. -11
C. 5
D. 11
E. None of the above
2. $4+-6=$
A. -2
B. -10
C. 10
D. 2
E. None of the above
3. $-5+12=$
A. -7
B. -17
C. 17
D. 7
E. None of the above
4. $-15+-8=$
A. -23
B. -7
C. 23
D. 7
E. None of the above
5. $-23+6=$
A. 17
B. -17
C. -29
D. 29
E. None of the above
6. $2+-18=$
A. -20
B. -16
C. 16
D. 20
E. None of the above
7. $9-4+-3=$ A. 8

B - 2
C. 2
D. -8
E. None of the above
8. $|-6+2|=$ A. 8
B. 4
C. -8
D. -4
E. None of the above
9. $-10-(-4)=$ A. 6
B. 14
C. -14
D. -6
E. None of the above
10. $7-(-12)=$ A. -19
B. 5
C. -5
D. 20
E. None of the above
11. $-3-24$
A. -27
B. 27
C. 21
D. -21
E. None of the above
12. $-16-(-8)=$ A. 24
B. -24
C. 8
D. -8
E. None of the above

## Adding \& Subtracting Signed Numbers

## Set 1

13. $18-(-2)=$ A. -20
B. -16
C. 16
D. 21
E. None of the above
14. $9-(-14)=$ A. -23
B. 23
C. -5
D. 5
E. None of the above
15. $6-(-8)-2=$ A. -4
B. -12
C. 12
D. 4
E. None of the above
16. -43
A. 55
$-\quad 12$
B. -55
C. 31
D. -31
E. None of the above
17. What is the included angel for a car
18. having a steering axis inclination of 6 $1 / 2^{\circ}$ and a camber angle of $-1 / 2^{\circ}$ ?
A. $6^{\circ}$
B. $7^{\circ}$
C. $61 / 2^{\circ}$
D. $71 / 2^{\circ}$
19. Air temperature is measured as above or below zero. Temperatures above zero are positive numbers and below zero are negative numbers. If the temperature at 5 AM is $-5^{\circ} \mathrm{F}$. and it rises $10^{\circ} \mathrm{F}$ by 11 AM , what is the temperature then?
A. $15^{\circ}$
B. $5^{\circ}$.
C. $16^{\circ}$
D. $-5^{\circ}$
D. -5
20. If the temperature is 15 degrees at 5

PM and drops 18 degrees, what is the temperature then?
A. $-23^{\circ}$
B. $-3^{\circ}$
C. $3^{\circ}$
D. $-15^{\circ}$
17. Auto technicians doing front-end alignment on an automobile must calculate the included angle. It is the sum of the steering axis inclination and the camber angle. If the steering angle inclination is $41 / 2^{\circ}$ and the camber angle is $-1 / 4^{\circ}$, what is the included angle?
A. $4^{\circ}$
B. $41 / 4^{\circ}$
C. $31 / 4^{\circ}$
D. $43 / 4^{\circ}$

## Adding \& Subtracting Signed Numbers

## Set 2

1. $-7+-4=$
A. 11
B. -3
C. -11
D. 3
E. None of the above
2. $5+-7=$
A. 2
B. -2
C. -12
D. 12
E. None of the above
3. $-6+13=$
A. 7
B. -7
C. 19
D. -19
E. None of the above
4. $-9+-11=$
A. 20
B. 2
C. -2
D. -20
E. None of the above
5. $-23+6=$
A. 17
B. -17
C. 29
D. -29
E. None of the above
6. $4+-21=$
A. -17
B. 17
C. -26
D. 26
E. None of the above
7. $10-5+-4=$ A. -1

B -9
C. 9
D. -11
E. None of the above
8. $|-7+4|=$ A. 11
B. 3
C. -3
D. -11
E. None of the above
9. $-11-(-5)=$ A. -6
B. 6
C. 16
D. -16
E. None of the above
10. $9-(-14)=$
A. -23
B. 5
C. -5
D. 23
E. None of the above
11. $22-(-4)=$ A. -26
B. 18
C. 26
D. -18
E. None of the above
12. $-16-(-7)=$ A. 9
B. 23
C. -9
D. -23
E. None of the above

## Adding \& Subtracting Signed Numbers

## Set 2

13. $19-(-3)=$
A. 22
B. 16
C. -16
D. -22
E. None of the above
14. $7-(-12)=$
A. -19
B. 5
C. -5
D. 19
E. None of the above
15. $9-(-11)-1=$ A. 19
B. -3
C. 3
D. 21
E. None of the above
16. $|-6-(-3)|=$ A. -3
B. 3
C. 9
D. -9
E. None of the above
17. The altitude of a mountain peak in California is 11,045 feet above sea level and the floor of Death Valley is 282 feet below sea level or -282 feet. What is the different in altitude between the mountain peak and the floor of Death Valley?
A. 10,763 feet
B $-11,327$ feet.
C. 11,327 feet
D. $-10,763$ feet
18. Stock market prices are given daily with changes from the previous day reported in positive or negative numbers depending on whether the price of the stock went up or down. If Home Depot is reported at 25.78 with a change of -1.16 , what was the price of that stock yesterday?
A. 24.62
B. 23.62
C. 26.94
D. 23.72
19. If Campbell Soup's current price of 22.35 is a change of +.57 from yesterday's price, what was the price yesterday?
A. 22.78
B. 21.78
C. 21.68
D. 22.68
20. An optician determines lens prescription strength by taking the sum of the first and second measurement on a lensometer. What is the prescription strength if the first reading was +5.25 and the second was ( -2.4 )?
A. -2.85
B. 7.65
C. 2.85
D. -7.65

## Add \& Subtract Signed Numbers

Simplify "double signs" before calculating

1. $-2--8=$
2. $-8-(-7)=$
3. $6-(-3)=$
4. $-1+-8=$
5. $-4+-6=$
6. $-9--1=$
7. $-5+9=$
8. $8+(-1)=$
9. $-9+-5=$
10. $-3+-5=$
11. $-2+-8=$

## Add $\mathcal{\&}$ Subtract Signed Numbers

Simplify "double signs" before calculating

1. $13-42=$
2. $-70+43=$
3. $-74+-1=$
4. $-8+62=$
5. $-9+(-47)=$
6. $35+66=$
7. $-81+-67=$
8. $-45--45=$
9. $-68+77=$
10. $-81+-74=$
11. $-82+11=$

## Multiply Signed Numbers

## Apply the Truth Table before calculating

1. $(-5)(-2)=$
2. $(4)(-3)=$
3. $(-6)(3)=$
4. $-5 \cdot 2=$
5. (9) $(-4)=$
6. (5) $(-8)=$
7. $5 \times-2=$
8. $8 \times 8=$
9. (9) $(-5)=$
10. $-9 \times-7=$
11. $5 \times 8=$
12. (3) $(0)=$
13. $0 \times-4=$
14. (2) $(2)=$
15. $-7 \cdot-5=$
16. $(-7)(9)=$
17. (6) $(3)=$
18. $(-4)(1)=$
19. $-9 \cdot 0=$
20. (2) $(3)=$

## Multiply Signed Numbers

## Apply the Truth Table before calculating

1. $23 \times-78=$
2. $(42)(24)=$
3. $-58 \times-24=$
4. $(53)(36)=$
5. $83 \times 8=$
6. (37) $(97)=$
7. $(-91)(74)=$
8. (52) $(-41)=$
9. $69 \times 25=$
10. $62 \times-18=$
11. $(-27)(32)=$
12. (94) $(-50)=$
13. $(-49)(14)=$
14. $(-36)(-38)=$
15. $-82 \times-9=$
16. $52 \times 43=$
17. $48 \times-87=$
18. $-93 \times 53=$
19. $49 \times 54=$
20. (97) $(-81)=$

## Divide Signed Numbers

## Apply the Truth Table before calculating

1. $6 / 2=$
2. $-45 / 5=$
3. $8 /-1=$
4. $-15 \div-3=$
5. $-40 / 8=$
6. $-9 / 1=$
7. $-18 \div 9=$
8. $20 / 5=$
9. $-21 / 3=$
10. $4 / 2=$
11. $-8 /-2=$
12. $64 / 8=$
13. $-3 / 1=$
14. $24 /-8=$
15. $36 / 4=$
16. $48 /-8=$
17. $64 \div-8=$
18. $6 \div-3=$
19. $-10 / 5=$
20. $-45 /-5=$

## Divide Signed Numbers

Apply the Truth Table before calculating

1. $135 /-27=$
2. $-64 \div-16=$
3. $31 /-31=$
4. $-279 / 93=$
5. $387 /-43=$
6. $168 \div-28=$
7. $413 /-59=$
8. $366 \div 61=$
9. $-232 / 29=$
10. $-63 \div-9=$
11. $264 \div 88=$
12. $-696 /-87=$
13. $4 /-4=$
14. $50 / 25=$
15. $-85 / 85=$
16. $-54 /-9=$
17. $-180 / 60=$
18. $-144 \div-36=$
19. $-152 \div 76=$
20. $73 \div-73=$




Module \#1:
Numerical Sequences

## Number Patterns <br> Make a number pattern for each of the descriptions

1. Start at 63 and subtract 4 each time. $\qquad$ , $\qquad$ , $\qquad$ , $\qquad$
$\qquad$
2. Start at 1 and add 7 each time. $\qquad$ , $\qquad$ , $\qquad$ , $\qquad$
3. Start at 17 and add 8 each time. $\qquad$ , $\qquad$ , ___ , $\qquad$ ,
4. Start at 50 and subtract 5 each time. $\qquad$
$\qquad$
$\qquad$ , __ , $\qquad$
5. Start at 65 and subtract 6 each time. $\qquad$ , $\qquad$ , , ___ , $\qquad$
6. Start at 9 and add 6 each time. $\qquad$
, $\qquad$ , $\qquad$ , $\qquad$ ,
7. Start at 18 and add 3 each time. $\qquad$ , $\qquad$ , $\qquad$ , $\qquad$
$\qquad$
8. Start at 70 and subtract 4 each time. $\qquad$ , $\qquad$ , __ , $\qquad$ ,
9. Start at 71 and subtract 2 each time. $\qquad$ , $\qquad$ , $\qquad$ , $\qquad$
10. Start at 64 and subtract 8 each time.
11. Start at 52 and subtract 1 each time. $\qquad$
, $\qquad$ , $\qquad$ , $\qquad$ ,
12. Start at 58 and subtract 5 each time. $\qquad$ , $\qquad$ , ___ , __ , $\qquad$
13. Start at 51 and subtract 1 each time. $\qquad$ , $\qquad$ , ___ $\qquad$ ,
14. Start at 56 and subtract 3 each time. $\qquad$ , $\qquad$ , ___ , $\qquad$ ,
15. Start at 68 and subtract 6 each time. $\qquad$
$\qquad$ , $\qquad$ , $\qquad$ , $\qquad$

## Number Patterns

Continue the pattern with the next two numbers

1. $19,24,29,34,39,44,49$, $\qquad$
2. $10,19,28,37,46,55,64$, $\qquad$
3. $22,25,28,31,34,37,40$, $\qquad$
4. $31,37,43,49,55,61,67$, $\qquad$
5. $60,57,54,51,48,45,42$, $\qquad$
6. $2,6,10,14,18,22,26$, $\qquad$
7. $79,71,63,55,47,39,31$, $\qquad$
8. $93,89,85,81,77,73,69$, $\qquad$
9. $97,88,79,70,61,52,43$, $\qquad$
10. $76,71,66,61,56,51,46$, $\qquad$

## Number Patterns

Continue the pattern with the next two numbers

1. $43,46,49,52,55,58$, $\qquad$
2. $10,18,9,17,8,16$, $\qquad$
3. $50,53,47,50,44,47$, $\qquad$
4. 46, 41, 42, 37, 38, 33, $\qquad$
5. $90,84,80,74,70,64$, $\qquad$
6. 70, 72, 64, 66, 58, 60, $\qquad$
7. 5, 7, 10, 14, 19, 25, $\qquad$
8. $88,79,71,64,58,53$, $\qquad$
9. $36,42,37,43,38,44$, $\qquad$
10. 70, 69, 72, 68, 71, $\qquad$

## Number Patterns

Continue the pattern with the next two numbers

1. $96,97,88,89,80,81,72$, $\qquad$ ,
2. $15,17,20,22,25,32$, $\qquad$
3. $50,51,55,56,60,61,65$, $\qquad$
4. $80,82,79,81,78,80$, $\qquad$
5. $55,47,48,40,41,33,34$, $\qquad$
6. 5, 10, 12, 17, 19, 24, 26, $\qquad$
7. 30, 29, 38, 37, 46, 45, 54, $\qquad$
8. 40, 41, 38, 40, 37, 40, 37, $\qquad$
9. $34,36,40,46,54,64$, $\qquad$
$\qquad$
10. $67,60,63,56,59$, $\qquad$

## Number Patterns

Continue the pattern with the next two numbers

1. $2,4,6,12,14,28,30$, $\qquad$
2. 3, 3, 5, 5, 7, 7, 9, 9, $\qquad$
3. $5,11,18,26,35,45$, $\qquad$
4. $76,73,75,70,72,65,67$, $\qquad$
5. 90, 82, 87, 80, 85, 76, $\qquad$
6. $1,2,3,6,7,14,15$, $\qquad$
7. 1, 2, 4, 8, 15, 31, $\qquad$
8. $90,93,85,88,81,84$, $\qquad$
9. $4,6,8,11,13,17$, $\qquad$
10. 96, 86, 77, 69, 62, 56, $\qquad$ ,

## Number Patterns

Continue the pattern with the next two numbers

1. $9,11,14,18,23,29$, $\qquad$
2. $71,67,65,60,58,52,50$, $\qquad$
3. 10, 16, 17, 24, 25, 33, 34, $\qquad$
4. $2,8,16,26,38,52$, $\qquad$
5. 35, 30, 38, 33, 41, 36, $\qquad$
6. $99,96,95,91,90,85,84$, $\qquad$
7. 78, 74, 77, 72, 75, 69, 72, $\qquad$
8. $1,9,16,22,27,31,34$, $\qquad$
9. $10,8,12,9,13,8,12$, $\qquad$
10. 24, 29, 27, 32, 29, 34, 30, $\qquad$

## Number Patterns

Write the next three terms in the patterns below

1. $51,44,37,30$, $\qquad$
$\qquad$ , $\qquad$ .
2. $54,51,48,45$, $\qquad$ , $\qquad$ ,
3. $52,48,44,40$, $\qquad$ , $\qquad$ , . 4. $63,58,53,48$, $\qquad$ , _ ,
4. $7,9,11,13$, $\qquad$ , $\qquad$ , $\qquad$ .
5. $12,20,28,36$, $\qquad$ , $\qquad$ ,
6. $4,10,16,22$, $\qquad$ , _ , .
7. $13,16,19,22$, $\qquad$ , $\qquad$ ,
8. $10,18,26,34$, $\qquad$ , __, , . 10. $23,29,35,41$, $\qquad$ , ,
9. $72,66,60,54$, $\qquad$ , _ $\qquad$ . 12. $58,51,44,37$, $\qquad$ , $\qquad$
10. $8,16,24,32$, $\qquad$ , $\qquad$ , . 14. $22,30,38,46$, $\qquad$ , $\qquad$
11. $17,22,27,32$, $\qquad$ , _ $\qquad$ . 16. $3,4,5,6$, $\qquad$ , $\qquad$
12. $68,64,60,56$, $\qquad$ . 18. $70,69,68,67$, $\qquad$ , $\qquad$
13. $53,52,51,50$, $\qquad$ , $\qquad$ . 20. 71, 65, 59, 53, $\qquad$ , __, $\qquad$
14. $62,60,58,56$, $\qquad$ , $\qquad$ . 22. 18, 21, 24, 27, $\qquad$ , __, $\qquad$
15. $60,53,46,39$, $\qquad$ . 24. 21, 26, 31, 36, $\qquad$
16. $66,64,62,60$, $\qquad$ , $\qquad$ , $\qquad$ . 26. $65,60,55,50$, $\qquad$ _, __, $\qquad$
17. $24,31,38,45$, $\qquad$ . 28. 16, 20, 24, 28, $\qquad$
18. $73,72,71,70$, $\qquad$ . 30. 69, 67, 65, 63, $\qquad$ ,

## Practice Questions

## Set 3 (Answers begin on page 102.)

This set will give you additional practice dealing with number series questions.
41. 44413835322926
a. 2421
b. 2219
c. 2319
d. 2932
e. 2320
42. 6101418222630
a. 3640
b. 3337
c. 3842
d. 3436
e. 3438
43. 34302622181410
a. 86
b. 64
c. 1418
d. 62
e. 40
44. 2444416388
a. 1012
b. 3532
c. 349
d. 3510
e. 1052
45. 32292623201714
a. 118
b. 128
c. 117
d. 3229
e. 109
46. 14142626383850
a. 6072
b. 5062
c. 5072
d. 6262
e. 6280
47. 812913101411
a. 1411
b. 1512
c. 815
d. 1519
e. 85
48. 472610132016
a. 144
b. 1417
c. 1814
d. 1913
e. 1914
49. 381015172224
a. 2628
b. 2934
c. 2931
d. 2631
e. 2632
50. 171414111188
a. 85
b. 52
c. 82
d. 55
e. 58
51. 13291526172319
a. 2123
b. 2021
c. 2017
d. 2527
e. 2220

## Practice Questions

52. 16265636466856
a. 8066
b. 6482
c. 6680
d. 7868
e. 6682
53. 796612146617
a. 1966
b. 6619
c. 1922
d. 2066
e. 6620
54. 353510123517
a. 2235
b. 3519
c. 1935
d. 1924
e. 2224
55. 36312924221715
a. 1311
b. 105
c. 138
d. 127
e. 108
56. 42403835333128
a. 2522
b. 2623
c. 2624
d. 2523
e. 2622
57. 11141417172020
a. 2323
b. 2326
c. 2124
d. 2424
e. 2427
58. 17321929212623
a. 2525
b. 2022
c. 2325
d. 2522
e. 2732
59. 10341231142816
a. 2518
b. 3013
c. 1926
d. 1820
e. 2522
60. 32313229322732
a. 2532
b. 3132
c. 2932
d. 2530
e. 2930

## Practice Questions

- Set 4 (Answers begin on page 103.)

This set contains additional number series questions, some of which are in Roman numerals. These items differ from Sets 1,2 , and 3 because they ask you to find the number that fits somewhere into the middle of the series. Some of the items involve both numbers and letters; for these questions, look for a number series and a letter series. (For additional practice in working letter series questions, see Set 5.)
61. Look at this series: $8,43,11,41, \ldots, 39,17, \ldots$ What number should fill in the blank?
a. 8
b. 14
c. 43
d. 44
62. Look at this series: $15, \ldots, 27,27,39,39, \ldots$

What number should fill the blank?
a. 51
b. 39
c. 23
d. 15
63. Look at this series: $83,73,93,63, \ldots, 93,43, \ldots$ What number should fill the blank?
a. 33
b. 53
c. 73
d. 93
64. Look at this series: $4,7,25,10, \ldots, 20,16,19, \ldots$ What number should fill the blank?
a. 13
b. 15
c. 20
d. 28
65. Look at this series: $72,76,73,77,74, \ldots, 75, \ldots$ What number should fill the blank?
a. 70
b. 71
c. 75
d. 78
66. Look at this series: $70,71,76, \ldots, 81,86,70,91, \ldots$ What number should fill the blank?
a. 70
b. 71
c. 80
d. 96
67. Look at this series: $664,332,340,170, \ldots, 89, \ldots$
. Look at this series: $664,332,340,170$
What number should fill the blank?
a. 85
b. 97
c. 109
d. 178

Homework Cut 68-

Numerical Reasoning Test 2
Answer as many questions as you can in 20 minutes. Bubble in your answers on the separate answer sheet

Identify the missing number at the end of the series.

1) $3,9,15,21$, ?
2) $4,13,21,28$, ?

| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: |
| 37 | 36 | 31 | 34 | 33 |

3) $798,777,756,735$, ?

| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: |
| 712 | 711 | 720 | 710 | 714 |

4) $2,5,9,14,20$ ?

| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: |
| 23 | 29 | 27 | 25 | 28 |

A B C D E

A B C D E

A B C D E

A B C D E

Identify the missing number or letter within the series.
6) $16,18,21, ?, 30$

| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: |
| 27 | 28 | 22 | 25 | 26 |

7) $97,94, ?, 79,67,52$

| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: |
| 88 | 86 | 70 | 81 | 82 |

A B C D E

A B C D E

A B C D E

A B C D E
9) ?, $125,64,27,8,1$

| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: |
| 298 | 200 | 175 | 216 | 210 |

Numerical Reasoning Test 3
Answer as many questions as you can in 20 minutes. Bubble in your answers on the separate answer sheet

Identify the missing number at the end of the series.

1) $7,11,15,19$ ?
2) $11,16,26,41$, ?
3) $28,35,42,49,56$, ?

| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: |
| 62 | 63 | 64 | 65 | 66 |

4) $97,94,88,79,67$, ?

| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: |
| 52 | 50 | 49 | 47 | 44 |

5) $72,63,54,45, ?$

| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: |
| 32 | 33 | 36 | 39 | 35 |

Identify the missing number or letter within the series.
6) 195, ?, 180, 170, 165

| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: |
| 192 | 188 | 185 | 190 | 182 |

7) $3,5,15,17,27, ?, 39$

| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: |
| 31 | 29 | 25 | 35 | 30 |

8) $54, ?, 28,18,10,4$

| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: |
| 36 | 35 | 37 | 41 | 40 |

9) $1,3, ?, 9,27,243$

| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 3 | 5 | 6 | 7 |

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

Numerical Reasoning Test 4
Answer as many questions as you can in 20 minutes. Bubble in your answers on the separate answer sheet

Identify the missing number at the end of the series.

1) $5,12,19,26$, ?
2) $11,16,26,41$, ?
3) $100,96,91,85$, ?

| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: |
| 74 | 75 | 77 | 78 | 79 |

4) $5,12,26,47$, ?

| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: |
| 66 | 65 | 60 | 70 | 75 |

5) $0,4,9,13,18$ ?

| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: |
| 22 | 20 | 24 | 21 | 25 |

Identify the missing number within the series.
6) ?, 14, 12, 11, 11, 12

| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: |
| 14 | 17 | 18 | 15 | 16 |

7) $11,30, ?, 68,87,106$

| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: |
| 50 | 52 | 40 | 49 | 47 |

8) $68,72,75, ?, 82,86$

| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: |
| 80 | 78 | 77 | 81 | 79 |

9) ?, $30,35,25,30,20$

| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: |
| 40 | 45 | 25 | 20 | 30 |

10) $54,40,28, ?, 10,4$

| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :---: | :---: | :---: | :---: | :---: |
| 24 | 16 | 18 | 14 | 15 |

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

## Numerical Sequences

Find the missing number

| 1. | 73 | 87 | 102 | 118 | $\bigcirc$ | 153 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2. | -43 | -60 | -74 | $\bigcirc$ | -93 | -98 |
| 3. | 47 | 52 | 55 | $\bigcirc$ | 55 | 52 |
| 4. | 47 | 26 | $\bigcirc$ | -13 | -31 | -48 |
| 5. | 57 | 67 | 77 | $0$ | 97 | 107 |
| 6. | 47 | $\bigcirc$ | 29 | 20 | 11 | 2 |
| 7. | 67 | 70 | 72 | 73 | $\bigcirc$ | 72 |
| 8. | 51 | 56 | $\bigcirc$ | 72 | 83 | 96 |
| 9. | 37 | 48 | 59 | 70 | $\bigcirc$ | 92 |
| 10. | $\bigcirc$ | 31 | 17 | 5 | -5 | -13 |
| 11. | $\bigcirc$ | -18 | -1 | 20 | 45 | 74 |
| 12. | 37 | 55 | $\bigcirc$ | 100 | 127 | 157 |
| 13. | 29 | 48 | 65 | $0$ | 93 | 104 |
| 14. | 71 | 90 | 109 | 128 | 147 |  |
| 15. | 73 | 93 | $\bigcirc$ | 133 | 153 | 173 |
| 16. | -59 | -40 | -16 | 13 | $0$ | 86 |
| 17. | $\bigcirc$ | -30 | -15 | 2 | 21 | 42 |
| 18. | 17 | 13 | 10 | $0$ | 7 | 7 |
| 19. | -31 | -23 | -15 | $)$ | 1 | 9 |
| 20. | $\bigcirc$ | 75 | 80 | 82 | 81 | 77 |


| 21. | -43 | -49 | $\bigcirc$ | -61 | -67 | -73 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22. | $\bigcirc$ | 35 | 56 | 80 | 107 | 137 |
| 23. | 73 | 84 | 99 | 118 | $\bigcirc$ | 168 |
| 24. | -83 | -70 | -62 | -59 | -61 | $\bigcirc$ |
| 25. | 7 | 22 | $\bigcirc$ | 52 | 67 | 82 |
| 26. | -11 | -4 | $\bigcirc$ | 10 | 17 | 24 |
| 27. | $\bigcirc$ | -12 | 5 | 20 | 33 | 44 |
| 28. | -59 | -63 | -69 | -77 | $\bigcirc$ | -99 |
| 29. | 29 | 23 | $\bigcirc$ | 14 | 11 | 9 |
| 30. | 29 | 37 | 46 | $\bigcirc$ | 67 | 79 |
| 31. | $\bigcirc$ | 92 | 109 | 124 | 137 | 148 |
| 32. | 73 | 64 | 52 | $\bigcirc$ | 19 | -2 |
| 33. | 53 | 47 | $\bigcirc$ | 32 | 23 | 13 |
| 34. | 17 | 11 | 5 | -1 | $\bigcirc$ | -13 |
| 35. | -31 | -9 | 16 | 44 | $\bigcirc$ | 109 |
| 36. | -43 | -35 | $\bigcirc$ | -22 | -17 | -13 |
| 37. | 7 | -9 | -30 | -56 | -87 | - |
| 38. | 51 | 69 | 88 | 108 | 129 | $\bigcirc$ |
| 39. | -11 | 8 | $\bigcirc$ | 43 | 59 | 74 |
| 40. | 67 | 70 | 75 | $\bigcirc$ | 91 | 102 |


| 41. | 47 | 58 | 70 | 83 | $\bigcirc$ | 112 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 42. | 37 | 57 | 76 | $\bigcirc$ | 111 | 127 |
| 43. | 71 | 54 | 37 | $\bigcirc$ | 3 | -14 |
| 44. | -43 | -59 | $\bigcirc$ | -91 | -107 | -123 |
| 45. | 53 | 37 | 21 | $\bigcirc$ | -11 | -27 |
| 46. | 37 | $\bigcirc$ | 85 | 115 | 149 | 187 |
| 47. | -59 | -44 | -27 | -8 | $\bigcirc$ | 36 |
| 48. | -83 | -68 | $\bigcirc$ | -47 | -41 | -38 |
| 49. | 71 | 55 | 42 | 32 | $\bigcirc$ | 21 |
| 50. | $\bigcirc$ | 50 | 63 | 76 | 89 | 102 |
| 51. | $\bigcirc$ | 53 | 50 | 48 | 47 | 47 |
| 52. | 37 | 47 | $\bigcirc$ | 70 | 83 | 97 |
| 53. | 73 | 64 | 56 | $\bigcirc$ | 43 | 38 |
| 54. | 79 | 89 | 101 | 115 | 131 | $\bigcirc$ |
| 55. | 71 | 79 | $\bigcirc$ | 89 | 91 | 91 |
| 56. | 17 | 25 | 34 | 44 | $\bigcirc$ | 67 |
| 57. | $\bigcirc$ | -70 | -55 | -38 | -19 | 2 |
| 58. | 73 | 67 | 65 | $\bigcirc$ | 73 | 83 |
| 59. | -43 | -47 | -51 | $\bigcirc$ | -59 | -63 |
| 60. | $\bigcirc$ | 29 | 50 | 70 | 89 | 107 |


| 61. | 37 | 21 | $\bigcirc$ | -11 | -27 | -43 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 62. | $\bigcirc$ | 31 | 49 | 71 | 97 | 127 |
| 63. | 57 | 76 | 98 | 123 | $\bigcirc$ | 182 |
| 64. | -11 | 3 | 20 | 40 | 63 | $\bigcirc$ |
| 65. | -83 | -80 | $\bigcirc$ | -68 | -59 | -48 |
| 66. | 71 | 79 | $\bigcirc$ | 101 | 115 | 131 |
| 67. | $\bigcirc$ | 55 | 62 | 68 | 73 | 77 |
| 68. | 71 | 81 | 91 | 101 | $\bigcirc$ | 121 |
| 69. | -11 | -4 | $\bigcirc$ | 1 | -1 | -6 |
| 70. | 71 | 62 | 55 | $\bigcirc$ | 47 | 46 |
| 71. | $\bigcirc$ | 50 | 49 | 44 | 35 | 22 |
| 72. | 29 | 20 | 12 | $\bigcirc$ | -1 | -6 |
| 73. | -43 | -38 | $\bigcirc$ | -28 | -23 | -18 |
| 74. | 73 | 95 | 117 | 139 | $\bigcirc$ | 183 |
| 75. | 29 | 44 | 59 | 74 | $\bigcirc$ | 104 |
| 76. | 33 | 43 | $\bigcirc$ | 66 | 79 | 93 |
| 77. | -31 | -20 | -9 | 2 | 13 | $\bigcirc$ |
| 78. | 51 | 56 | 61 | 66 | 71 | $\bigcirc$ |
| 79. | 53 | 71 | $\bigcirc$ | 113 | 137 | 163 |
| 80. | -59 | -41 | -20 | $\bigcirc$ | 31 | 61 |


| 81. | -43 | -32 | -21 | -10 | $\bigcirc$ | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 82. | 41 | 49 | 62 | $\bigcirc$ | 103 | 131 |
| 83. | 33 | 53 | 76 | $\bigcirc$ | 131 | 163 |
| 84. | 73 | 81 | $\bigcirc$ | 103 | 117 | 133 |
| 85. | -43 | -28 | -10 | $\bigcirc$ | 35 | 62 |
| 86. | 47 | $\bigcirc$ | 87 | 107 | 127 | 147 |
| 87. | 37 | 20 | 6 | -5 | $\bigcirc$ | -18 |
| 88. | 7 | 15 | $\bigcirc$ | 40 | 57 | 77 |
| 89. | 57 | 51 | 42 | 30 | $\bigcirc$ | -3 |
| 90. | $\bigcirc$ | -17 | -8 | -4 | -5 | -11 |
| 91. | $\bigcirc$ | 72 | 89 | 104 | 117 | 128 |
| 92. | 79 | 87 | $\bigcirc$ | 103 | 111 | 119 |
| 93. | 79 | 97 | 120 | $\bigcirc$ | 181 | 219 |
| 94. | -43 | -23 | -3 | 17 | 37 | $\bigcirc$ |
| 95. | 41 | 32 | $\bigcirc$ | 8 | -7 | -24 |
| 96. | 29 | 25 | 21 | 17 | $\bigcirc$ | 9 |
| 97. | $\bigcirc$ | 99 | 121 | 145 | 171 | 199 |
| 98. | -11 | -32 | -57 | $\bigcirc$ | -119 | -156 |
| 99. | 73 | 64 | 57 | $\bigcirc$ | 49 | 48 |
| 100. | $\bigcirc$ | 60 | 60 | 57 | 51 | 42 |



${ }^{3} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc{ }^{23} \mathrm{O}$ ○○○○○ ${ }_{43} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

 $8 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc{ }^{28} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ , ○○○○○ $10 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ $110 \bigcirc 000$ $120 \bigcirc \bigcirc \bigcirc \bigcirc$ ${ }_{13} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ ${ }^{14} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ $15 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ $16 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ $17 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ $18 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ $19 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ $20 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$




## Module \#2:

Plug In PEMDAS

## Order of Operations

For some people, it is helpful to try to simplify expressions containing signed numbers as much as possible. When you find signed numbers with addition and subtraction operations, you can simplify the task by changing all subtraction to addition. Subtracting a number is the same as adding its opposite. For example, subtracting a three is the same as adding a negative three. Or subtracting a negative 14 is the same as adding a positive 14 . As you go through the step-by-step answer explanations, you will begin to see how this process of using only addition can help simplify your understanding of operations with signed numbers. As you begin to gain confidence, you may be able to eliminate some of the steps by doing them in your head and not having to write them down. After all, that's the point of practice! You work at the problems until the process becomes automatic. Then you own that process and you are ready to use it in other situations.

The Tips for Working with Integers section that follows gives you some simple rules to follow as you solve problems with integers. Refer to them each time you do a problem until you don't need to look at them. That's when you can consider them yours.

You will also want to review the rules for Order of Operations with numerical expressions. You can use a memory device called a mnemonic to help you remember a set of instructions. Try remembering the word PEMDAS. This nonsense word helps you remember to:

P do operations inside Parentheses
E evaluate terms with Exponents
M D do Multiplication and Division in order from left to right
A S Add and Subtract terms in order from left to right

## Word Translations

EQUALS key words: is, are, has

| English | Math |
| :--- | :--- |
| Bob is 18 years old. | $B=18$ |
| There are 7 hats. | $h=7$ |
| Judi has 5 books. | $\mathrm{J}=5$ |

ADD key words: sum; more, greater, or older than; total; altogether

| English | Math |
| :--- | :--- |
| The sum of two numbers is 10. | $x+y=10$ |
| Karen has \$5 more than Sam. | $K=5+S$ |
| The base is 3" greater than the height. | $b=3+h$ |
| Judi is 2 years older than Tony. | $J=2+T$ |
| Al threw the ball 8 feet further than Mark. | $A=8+M$ |
| The total of three numbers is 25. | $a+b+c=25$ |
| How much do Joan and Tom have altogether? | $J+T=?$ |

SUBTRACT key words: difference; fewer, less, or younger than; remain; left over

| English | Math |
| :--- | :--- |
| The difference between two numbers is 17. | $x-y=17$ |
| Jay is 2 years younger than Brett. | $J=B-2($ NOT 2 - B) |
| After Carol ate 3 apples, $r$ apples remained. | $r=a-3$ |
| Mike has 5 fewer cats than twice the number Jan has. | $M=2 J-5$ |

MULTIPLY key words: of, product, times

| English | Math |
| :--- | :--- |
| $25 \%$ of Matthew's baseball caps | $0.25 \times m$, or 0.25 m |
| Half of the boys | $\frac{1}{2} \times b$, or $\frac{1}{2} b$ |
| The product of two numbers is 12. | $a \times b=12$, or $a b=12$ |

Notice that it isn't necessary to write the times symbol $(\times)$ when multiplying by an unknown.
DIVIDE key word: per

| English | Math |
| :--- | :--- |
| 15 blips per 2 bloops | $\frac{15 \text { blips }}{2 \text { bloops }}$ |
| 60 miles per hour | $\frac{60 \text { miles }}{1 \text { hour }}$ |
| 22 miles per gallon | $\frac{22 \text { miles }}{1 \text { gallon }}$ |

## Order of Operations

W
bole numbers are made up of ten digits: $0,1,2,3,4,5,6,7,8$, and 9 . In this lesson, you will work only with whole numbers. In later lessons, you will learn specific ways to deal with numbers that come in between whole numbers. These numbers include $6.5, \frac{1}{2}, 34.6, \frac{2}{3}$, and so on.

## SOLVING PROBLEMS WITH MULTIPLE STEPS

You are familiar with the four basic operations, or ways of calculating: adding, subtracting, multiplying, and dividing. Sometimes a problem will ask you to do more than one operation. For example, if you are asked to solve this problem, what should you do?

$$
8 \times 3+20 \div 4=
$$

You could do the operations in order from left to right. That is, you could multiply $(8 \times 3=24)$, add $(24+20=44)$, then divide $(44 \div 4=11)$ to get 11 . But you would not get the correct answer. The correct answer is 29. It looks tricky, but it's not if you know the order of operations. The order of operations involves three simple steps. When you follow these steps, you will get the correct answer.

## THE ORDER OF OPERATIONS

Step 1: Do all the operations in parentheses.
Step 2: Multiply and divide numbers in order from left to right.
Step 3: Add and subtract numbers in order from left to right.

Example: $2+5-(9 \div 3) \times 2=$
To solve this problem, you should follow the steps in the table above.
Step 1: Do the operations in parentheses first.
$2+5-(9 \div 3) \times 2=$
$2+5-(3) \times 2=$
Step 2: Multiply.
$2+5-6=$
Step 3: Add and subtract numbers in order, from left to right.
$7-6=1$

If you have a series of numbers to add or multiply, the order will not affect your final answer. You can group the numbers in a way that makes the addition or multiplication easier.

## Examples:

$$
\begin{aligned}
& 3+6=6+3 \\
& 9 \times 2=2 \times 9 \\
& (2+3)+5=2+(3+5) \\
& 4 \times(6 \times 8)=(4 \times 6) \times 8
\end{aligned}
$$

So, if you were asked to solve the following problem

$$
27+5+3+15=
$$

you might group $27+3$ and $5+15$ to make the math easier and faster. Do you see how grouping can make a problem easier? How could you group the numbers in the following problem to make it easier?
$12 \times 7 \times 5=$
If you know that $12 \times 5$ is 60 , you could do this calculation first. Then calculate $60 \times 7$ (420). Notice that if you did $12 \times 7$ first, then you would end with $84 \times 5$, which isn't as quick to calculate at $60 \times 7$. Regrouping the numbers can speed up your calculations.

Keep in mind that all of the operations in the series must be either addition or multiplication for this shortcut to work. Also, remember that the order of the numbers in subtraction and division is important. You cannot change the order of subtraction and division numbers and still get the correct answer.

What if the question had asked: How much did the two girls pay altogether? How would you write the problem in math symbols to answer this question? There is more than one way to write it. Here are some ways you might recognize:

$$
\begin{aligned}
& 2 \times(6.25+2)+4.50= \\
& 2 \times 6.25+4.50+2 \times 2= \\
& 2 \times(6.25+(4.50 \div 2)+2)=
\end{aligned}
$$

## Order of Operations

## Practice

Solve the following problems using the order of operations.

1. $(8+2)-3 \times 2=$
2. $9 \times 5+3 \div 1=$
3. $(3+4) \times(2+6)=$
4. $(8+12)+(6 \div 2)=$
5. $9 \div 3+7=$
6. $9 \times 7+8 \div 4=$
7. $6 \times(5+2)-1=$
8. $(10 \times 4)+12-6=$
9. $(9+3) \times(18 \div 3)=$
10. $(18+6) \div(18-12)=$
11. $5 \times 7+16 \div 4=$
12. $12+8-(20 \times 2) \div 10=$
13. $3 \times 9-15 \div 5=$
14. $14-1-4 \div 2=$
15. $12+4 \div 4 \times 4+7=$
16. $(13+2) \div 3+2=$
17. $11+5+4 \times 3+7=$
18. $8 \times 6+10 \div 2=$
19. $4 \times 10-7+17+7 \times 2=$
20. $8 \times 4+21 \div 3-7+9-1$

## Practice

Translate each problem into math symbols. Then use the order of operations to solve each problem.
21. Add 30 and 45. Then divide by 5 .
22. Divide 81 by 9 . THen multiply the quotient by 9 .
23. Multiply 9 and 6 . Then add 12 to the product.
24. Add the difference of 7 and 3 to the product of 2 and 8 .
25. Add 12 and 4 . Then multiply by 8 .
26. Divide 42 by 6 . Then find the difference between the quotient and 3 .
27. Multiply the sum of 3 and 7 by the sum of 2 and 8 .
28. Divide the sum of 15 and 5 by the product of 2 and 5 .

## Order of Operations

## CHOOSING AN OPERATION

Often a problem will tell you exactly which operation you should do. However, sometimes you will have to translate the words in a word problem into the operations. Look for these clues when you have to choose the operations.

You add (+) when you are asked to

- find a sum
- find a total
- combine amounts

Key words to look for:

- sum
- total
- altogether

You subtract (-) when you are asked to

- find a difference
- take away an amount
- compare quantities

Key words to look for:

- difference
- take away
- how many more than
- how much less than
- how many fewer than
- how much is left over

You multiply ( $\times, \cdot$ ) when you are asked to

- find a product
- add the same number over and over

Key words to look for:

- product
- times

You divide ( $\div$ ) when you are asked to

- find a quotient
- split an amount into equal parts

Key words to look for:

- quotient
- per


## Order of Operations

Example: Add the product of 6 and 3 to the sum of 10 and 4 .
To solve this problem, begin by translating the words into math symbols. You know from the lists on the previous page and above on this page that the word product means to multiply. So you will need to multiply 6 and 3 . You also know that sum means to add. Thus, you could write the problem like this:

$$
6 \times 3+10+4=
$$

Now follow the order of operations to solve the problem you have written:
Step 1: There are no parentheses. Skip to Step 2.
Step 2: Multiply.
$6 \times 3+10+4=$
$18+10+4=$
Step 3: Add in order from left to right.
$28+4=32$

Example: Elsa and Thuy went to a movie at the cinema. They shared a large popcorn. Each girl paid for her own drink. The movie cost $\$ 6.25$. The popcorn cost $\$ 4.50$. Each drink cost $\$ 2$. How much did each girl pay?

Begin by translating the words into math symbols. The cost of the popcorn should be divided between the two girls. So, each girl paid

$$
6.25+(4.50 \div 2)+2=
$$

Now solve the problem following the order of operations.
Step 1: Do operations in parentheses first.

$$
6.25+(2.25)+2=
$$

Step 2: There is no multiplication or division. Skip to Step 3.
Step 3: Add.
$8.5+2=10.50$
Each girl paid $\$ 10.50$ for the movie and food.

## Order of Operations

Simplify the Expression

1. $3 \times\left(2 \times 4^{3}\right) \div 4$
2. $\left(4^{3}+2-1\right)$
3. $(5 \times 3) \times 1+5$
4. $\left(7^{2}-2^{3}-6\right)$
5. $\left(5^{3}+7\right) \times 2$
6. $4-\left(9+2^{2} \div 2\right)$
7. $6-\left(9+8^{2} \times 1^{3}\right)+5$
8. $(2 \div 4 \times 8)$
9. $8-\left(3+4^{3}\right) \times 5$
10. $5 \times\left(2^{3}-8\right) \times 5$
11. $(9 \times 9+5)$
12. $(1+4-4)$
13. $5 \times\left(4 \div 1^{2}+8\right)$
14. $\left(5-8^{2}+6-1\right)$
15. $2^{2} \div(6 \div 9)-5$
16. $\left(3+1^{2}+4\right)$
17. $1^{3}-(2+3+7) \times 5$
18. $3 \times\left(2^{3}+5\right)+2$
19. $9 \times\left(2^{3} \div 4 \times 5\right)$
20. $(8+7+2-9)$

## Order of Operations

Simplify the Expression

1. $3-\left(2^{3} \div 1\right)+5$
2. $\left(6^{3}-9-1\right)$
3. $\left(5+7^{3}\right) \div 7 \times 7$
4. $(2-7)-8-3$
5. $\left(6+7^{2}\right)+1$
6. $4^{3}-\left(2+2^{3}\right) \times 5$
7. $(6-1+7)$
8. $\left(3^{2}-3^{2}\right)+5$
9. $\left(7+8-4^{2}\right) \times 2+1$
10. $6-\left(8+3^{3}\right)-4$
11. $\left(3+3 \times 6+3^{2}-3\right)$
12. $\left(7+2^{3}\right) \times 9$
13. $(3 \times 6)-5$
14. $6 \times(2 \div 1) \div 1$
15. $\left(2^{3}-9-8\right) \div 3 \times 3$
16. $2^{3} \div(7 \div 7 \div 8)$
17. $\left(6+6^{2}\right) \times 3$
18. $(3+1) \times 8 \times 4$
19. $\left(7^{3} \times 4\right)+7$
20. $6^{2}-3 \times\left(3^{2} \times 2\right)+5$

## Order of Operations

Simplify the Expression

1. $4^{2}+\left(1 \times 5+7^{2}\right)+8$
2. $6^{2} \div(2-8)+1-8$
3. $\left(6^{2} \times 7\right) \div 2$
4. $(6+8-2)$
5. $\left(1-4^{2}\right) \times 2$
6. $5+\left(4^{3}+1\right)+8$
7. $(4+8)+1$
8. $\left(2^{2}+9 \div 1\right)$
9. $3^{2}+9^{2}-(8+7) \div 5$
10. $\left(3^{2} \times 3+4+2\right)-1$
11. $\left(9 \times 9^{3}+4\right)$
12. $\left(8-3^{2}\right)-8$
13. $(2 \times 5 \div 5)$
14. $\left(5^{3}+3-2^{3}+6-8\right)$
15. $5-9+\left(7 \times 2^{2}-8\right)$
16. $\left(1^{2} \times 7\right) \times\left(8^{2}-8\right) \times 1$

## Order of Operations

Simplify the Expression

1. $\left(2^{3}+5 \times 8\right)$
2. $\left(2 \times 6^{3}+6^{3} \times 1^{2}+2\right)$
3. $(4 \div 1) \times 1$
4. $(6 \times 3) \times 7$
5. $\left(6-5^{2}\right)+3^{3} \times 2$
6. (1-6-3)
7. $5^{2}+9+\left(2^{2} \times 1^{3} \times 5\right)$
8. $\left(7^{2} \div 1-8\right)+7^{3}+4$
9. $\left(9^{2}-3\right)+9$
10. $\left(3^{3}+9\right) \times(1+9-2)$
11. $9+9+\left(6^{2}-6\right) \times 4$
12. $5-(3-3)+6^{3} \div 1$
13. $6+1 \times(9-4)+6$
14. $(6 \div 6) \times\left(2^{2}+8\right) \div 1$
15. $\left(2^{2} \times 4 \times 3\right)$
16. $\left(1^{3}-6\right) \div 5$
17. $\left(7-2^{2}+3\right)$
18. $4^{3} \times(6+8) \div 1$
19. $4 \times\left(9^{2} \div 6 \times 5\right)$
20. $\left(5 \times 8^{2}\right)+9$

## Order of Operations

Simplify the Expression

1. $\left(7-5^{3}\right)+5$
2. $7^{3}+\left(8 \div 1^{2}-5\right)$
3. $\left(9^{2} \times 4-6\right)$
4. $\left(5^{2} \times 2^{2}-8\right)$
5. $(9-5) \div(8 \div 8)+1$
6. $1^{2}+\left(1^{2}-5^{2}\right)+9$
7. $\left(4^{2}-1^{3}\right) \times(5-9-6)$
8. $\left(1^{2} \div 1\right)-9-4$
9. $\left(7 \times 4^{3}+1\right)+9 \times 8$
10. $4^{2}-\left(9 \times 7^{3}\right)-4^{3}+8$
11. $5-\left(6+2^{2}\right)+9^{2}-2$
12. $9+\left(4 \times 4^{2}-4\right)$
13. $1+(9+6)+3$
14. $\left(1+2^{3} \div 4\right)+5^{3}+8$
15. $\left(2^{3}+6^{2}-3^{2}+9 \times 3\right)$
16. $\left(1^{2} \div 1+6\right)$
17. $3-2^{2}-\left(7^{3}+2^{2}\right)+6$
18. $9^{3}+\left(5^{2}+6 \div 2\right)$
19. $(7+1)+2$
20. $\left(4^{3}-9+4\right)$

## Order of Operations

Simplify the Expression

1. $\left(3^{3}+7\right)-1$
2. $8^{3} \times\left(2^{2}+7-7\right)+5$
3. $\left(9^{2}+5\right)-8^{3}+1$
4. $(2 \times 7 \times 8)$
5. $\left(8^{3}-2^{2}\right) \times 3$
6. $5^{3} \div\left(7^{3} \div 7^{3}\right) \times 6$
7. $\left(5 \times 3+4^{2}\right)+2$
8. $\left(5+9^{2} \times 2^{2}\right)-9 \times 7$
9. $(1-5)-9^{2}+2$
10. $6+\left(7^{3} \div 7\right)-6-3$
11. $8^{2} \times\left(1 \times 1^{3}-9 \times 8\right)$
12. $3 \times(7-6) \times 7$
13. $\left(3^{2}+8^{2}+9\right)$

Simplify the Expression

$$
\begin{array}{ll}
\left(7-3^{3}\right)-5-9= & (6-5)-8 \div 2= \\
\left(3^{3} \times 3\right)-5-8= & (3 \times 5 \times 7)= \\
6^{2}-(6 \times 7 \times 5)= & (3 \times 5) \times 5= \\
\left(2^{2}-7^{2}\right)-(8 \div 4) \times 7= & 6+5+\left(9 \div 3^{3} \times 7\right)= \\
\left(5 \times 3^{2}+6\right)= & 3 \times(2 \times 3 \times 2)=
\end{array}
$$

## Order of Operations

## Simplify the Expression

$$
\begin{aligned}
& 3^{3}+10 \times 3= \\
& \left(4^{3}+4 \times 3\right) \div 2-3= \\
& 4 \times(3 \div 24 \times 64)-8= \\
& 3 \times\left[5^{2} \times\left(3^{2}-1\right)\right]= \\
& \left(2^{3}-16 \div 2\right) \times 3=
\end{aligned}
$$

## Simplify the Expression

$$
\begin{aligned}
& 4^{2}+15 \times 2= \\
& \left(3^{3}+5 \times 3\right) \div 2-3= \\
& 3 \times(4 \div 24 \times 42)-8= \\
& 2 \times\left[5^{2} \times\left(4^{2}-3\right)\right]= \\
& \left(3^{3}-16 \div 2\right) \times 3=
\end{aligned}
$$

## Order of Operations

## Practice Test \#2

1. Which of the following is the same as $17+23$ ?
A. $17 \times 23$
B. $23 \times 17$
C. $23+17$
D. $17-23$
2. Which of the following is the same as $(4 \times 20)-(4 \times 7)$ ?
A. $4-(20 \times 7)$
B. $4 \times 20 \times 7$
C. $4 \times 20-7$
D. $4(20-7)$
3. Which of the following is not equal to $7(8-4)$ ?
A. $56-7 \times 4$
B. $7 \times 8-4$
C. $7 \times 8-7 \times 4$
D. $7 \times 4$

## Complete each exercise by applying the rules for order of operations.

4. $3^{2} \times 4^{3}$
A. 576
B. 765
C. 35
D. 72
5. $27-256 \div 4^{3}$
A. 32
B. 23
C. 56
D. 35
6. An agent charges $\$ 150$ per gig to book a rock band, plus $\$ 75$ per month for travel expenses. What was his monthly fee if he booked 6 gigs for the band last month?
A. $\$ 900$
B. $\$ 600$
C. $\$ 11,250$
D. $\$ 975$
7. Six people in a club will share the expenses of a party that costs $\$ 240$. How much will Katie pay for her share of the party if the club owes her $\$ 8$ ?
A. $\$ 40$
B. $\$ 32$
C. $\$ 24$
D. $\$ 38$
8. Jesse spends $\$ 5$ a day on lunch. Which algebraic expression correctly represents the amount of money he will spend on lunch in $x$ days?
A. $x-5$
B. $5 x$
C. $5+x$
D. $x^{5}+5$

## Order of Operations

## Practice Test \#2

9. Which algebraic expression correctly represents this phrase? The quotient of twelve and seven times a number, decreased by five.
A. $\frac{12}{7 N}-5$

7N
B. 5-12

7N
C. $5-\frac{7}{12 N}$
d. $12 \mathrm{~N}-5$ 7
10. Which algebraic equation correctly represents this sentence?
A number increased by eight is nineteen.
A. $19-\mathrm{y}=8$
B. $19+y=8$
C. $y+8=19$
D. $19 y=y-8$
11. $6+8 \times 4$
A. 32
B. 36
C. 38
D. 56
12. $(10+9) \times 5$
A. 95
B. 89
C. 50
D. 59
13. $4+7 \times 6+9$
A. 55
B. 50
C. 48
D. 165
14. $6(5+3)^{2}$
A. 384
B. 364
C. 264
D. 2304
15. $15-3+2^{3}$
A. 20
B. 4
C. 14
D. 22
16. $\frac{6+8+7}{3}$
A. 21
B. 7
C. 17
D. 11
17. $6+9 \times 4+5$
A. 74
B. 135
C. 47
D. 87
18. $45+8 \times 4$
A. 53
B. 212
C. 57
D. 77
19. $9+40 \div 8+6$
A. 20
B. 3.5
C. C .12
D. 9.35
20. $6(7+2)^{3}$
A. 2916
B. 162
C. c .4374
D. 90

Solving Algebraic Expressions
Substitute the numbers for the letters, and simplify to one number

$$
\begin{array}{ll}
\text { Variable Values } \\
\begin{array}{l}
a=3
\end{array} \\
b=-5 & y=\frac{1}{2} \\
x=6 & z=-8
\end{array}
$$

1. 


10.

$2\left(a^{2}+2 y\right) \div b$
18.
 $6 y(z+y)+3 a b$
2.

11.

$a^{3}+24 y-3 b$
19.
 $2 b x+(z-b)$
3.

12.

$-2 x-b+a z$
20.
 $12 a b+y$
4.

13.

$5 z^{2}-2 z+2$
21.
 $y\left[\left(\frac{x}{2}-3\right)-4 a\right]$
5.

$4 b^{2}-a z$
14.

$5 x y \div 2 b$
22.

$10 b^{3}-4 b^{2}$
6.

15.

$7 x+\frac{12}{x}-z$
23.

$8 y\left(a^{3}-2 y\right)$
16.

$2 b^{2} \div y$
24.

$z^{2}-4 a^{2} y$
8.

$6 b-2 a b$
17.

$b x(z+3)$
25.

9.


Solving Algebraic Expressions - A
Substitute the numbers for the letters, and simplify to one number

$$
\begin{array}{ll}
\text { Variable Values } \\
\begin{array}{l}
a=2
\end{array} \\
\begin{array}{ll}
b=-1 & y=-1 \\
x=3 & z=3
\end{array} \\
\hline
\end{array}
$$

1. 


10.

$2\left(a^{2}+2 y\right) \div b$
18.
 $6 y(z+y)+3 a b$
2.

11.

$a^{3}+24 y-3 b$
19.
 $2 b x+(z-b)$
3.

$2 a x-z$
12.

$-2 x-b+a z$
20.
 $12 a b+y$
4.

$5 a b+x y$
13.

$5 z^{2}-2 z+2$
21.
 $y\left[\left(\frac{x}{2}-3\right)-4 a\right]$
5.

$4 b^{2}-a z$
14.

$5 x y \div 2 b$
22.
 $10 b^{3}-4 b^{2}$
15.

$7 x+\frac{12}{x}-z$
23.

$8 y\left(a^{3}-2 y\right)$
16.

$2 b^{2} \div y$
24.

8.

$6 b-2 a b$
9.


Solving Algebraic Expressions - B
Substitute the numbers for the letters, and simplify to one number

$$
\begin{array}{ll} 
\\
\begin{array}{l}
\text { Variable Values } \\
a=2
\end{array} & \\
b=-2 & y=-1 \\
z=6 & z=1
\end{array}
$$

1. 


10.

$2\left(a^{2}+2 y\right) \div b$
18.
 $6 y(z+y)+3 a b$
2.

11.

$a^{3}+24 y-3 b$
19.
 $2 b x+(z-b)$
3.

$2 a x-z$
12.

$-2 x-b+a z$
20.
 $12 a b+y$
4.

$5 a b+x y$
13.

$5 z^{2}-2 z+2$
21.
 $y\left[\left(\frac{x}{2}-3\right)-4 a\right]$
5.

$4 b^{2}-a z$
14.

$5 x y \div 2 b$
22.
 $10 b^{3}-4 b^{2}$
15.

$7 x+\frac{12}{x}-z$
23.

$8 y\left(a^{3}-2 y\right)$
16.

$2 b^{2} \div y$
24.

8.

$6 b-2 a b$
9.


Substitute the numbers for the letters, and simplify to one number

$$
\begin{array}{ll}
\text { Variable Values } \\
\begin{array}{ll}
a=-2 & \\
b=-1 & y=-1 \\
x=6 & z=-1
\end{array}
\end{array}
$$

1. 


10.

$2\left(a^{2}+2 y\right) \div b$
18.
 $6 y(z+y)+3 a b$
2.

11.

$a^{3}+24 y-3 b$
19.
 $2 b x+(z-b)$
3.

$2 a x-z$
12.

$-2 x-b+a z$
20.
 $12 a b+y$
4.

$5 a b+x y$
13.

$5 z^{2}-2 z+2$
21.
 $y\left[\left(\frac{x}{2}-3\right)-4 a\right]$
5.

$4 b^{2}-a z$
14.

$5 x y \div 2 b$
22.
 $10 b^{3}-4 b^{2}$
6.

$7 x \div 2 y z$
15.

$7 x+\frac{12}{x}-z$
23.

$8 y\left(a^{3}-2 y\right)$
7.

$b x+z \div y$
16.

$2 b^{2} \div y$
24.

8.

$6 b-2 a b$
9.


Solving Algebraic Expressions - D
Substitute the numbers for the letters, and simplify to one number

$$
\begin{array}{ll}
\text { Variable Values } \\
\begin{array}{ll}
a=-1 & \\
b=-2 & y=1 \\
x=6 & z=1
\end{array} \\
\hline
\end{array}
$$

1. 


10.

$2\left(a^{2}+2 y\right) \div b$
18.
 $6 y(z+y)+3 a b$
2.

11.

$a^{3}+24 y-3 b$
19.
 $2 b x+(z-b)$
3.

$2 a x-z$
12.

$-2 x-b+a z$
20.
 $12 a b+y$
4.

$5 a b+x y$
13.

$5 z^{2}-2 z+2$
21.
 $y\left[\left(\frac{x}{2}-3\right)-4 a\right]$
5.

$4 b^{2}-a z$
14.

$5 x y \div 2 b$
22.
 $10 b^{3}-4 b^{2}$
6.

$7 x \div 2 y z$
15.

$7 x+\frac{12}{x}-z$
23.

$8 y\left(a^{3}-2 y\right)$
7.

$b x+z \div y$
16.

$2 b^{2} \div y$
24.

8.

$6 b-2 a b$
9.


Solving Algebraic Expressions - E
Substitute the numbers for the letters, and simplify to one number

$$
\begin{array}{ll}
\text { Variable } & \text { Values } \\
\begin{array}{l}
a=2
\end{array} & y=-1 \\
b=-2 & y=-1 \\
z=6 & z=-1
\end{array}
$$

1. 


10.

$2\left(a^{2}+2 y\right) \div b$
18.
 $6 y(z+y)+3 a b$
2.

11.

$a^{3}+24 y-3 b$
19.
 $2 b x+(z-b)$
3.

$2 a x-z$
12.

$-2 x-b+a z$
20.
 $12 a b+y$
4.

$5 a b+x y$
13.

$5 z^{2}-2 z+2$
21.
 $y\left[\left(\frac{x}{2}-3\right)-4 a\right]$
5.

$4 b^{2}-a z$
14.

$5 x y \div 2 b$
22.
 $10 b^{3}-4 b^{2}$
15.

$7 x+\frac{12}{x}-z$
23.

$8 y\left(a^{3}-2 y\right)$
16.

$2 b^{2} \div y$
24.

8.

$6 b-2 a b$
9.


Solving Algebraic Expressions - F
Substitute the numbers for the letters, and simplify to one number
1.

10.

$2\left(a^{2}+2 y\right) \div b$
18.
 $6 y(z+y)+3 a b$
2.

11.

$a^{3}+24 y-3 b$
19.
 $2 b x+(z-b)$
3.

$2 a x-z$
12.

$-2 x-b+a z$
20.
 $12 a b+y$
4.

$5 a b+x y$
13.

$5 z^{2}-2 z+2$
21.
 $y\left[\left(\frac{x}{2}-3\right)-4 a\right]$
5.

$4 b^{2}-a z$
14.

$5 x y \div 2 b$
22.
 $10 b^{3}-4 b^{2}$
15.

$7 x+\frac{12}{x}-z$
23.

$8 y\left(a^{3}-2 y\right)$
16.

$2 b^{2} \div y$
24.

$z^{2}-4 a^{2} y$
25.

$3 x^{2} b(5 a-3 b)$
8.

$6 b-2 a b$
17.

$b x(z+3)$

9.


|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  | $2 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |  | $2 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |
|  | $3 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |  | ${ }^{3} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |
|  | ${ }^{4} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |  | ${ }^{4} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |
| 茾 | $5 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ | $\underset{\text { \＃}}{ \pm}$ | $5 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |
| $\stackrel{\text { ¢ }}{\sim}$ | －$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ | 先 | $6 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |
| $\ddot{E}$ | $7 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ | $\stackrel{ \pm}{ \pm}$ | $7 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |
| 这 | $8 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ | 年 | $8 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |
|  | ，○○○○○ |  | ，○○○○○ |
|  | $10 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |  | $10 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |
|  | $11 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |  | ${ }_{11} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |
|  | ${ }_{12} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |  | $12 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |
|  | ${ }^{13} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |  | $13 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |
|  | $14 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |  | $14 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |
|  | $15 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |  | $15 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |
|  | $16 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |  | $16 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |
|  | $17 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |  | $17 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |
|  | $18 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |  | $18 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |
|  | $19 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |  | $19 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |
|  | $20 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ |  | $20 \bigcirc \bigcirc \bigcirc \bigcirc$ |

## Module \#3: <br> Variables

## Solve for the Unknown

## Section A

(1) $3 x+1=10$
(2) $4 y+3=11$
(3) $2 a-5=7$
(4) $5 m-6=9$
(5) $5=4 x+9$
(6) $2=5 b+12$
(7) $2 x-5=-11$
(8) $3 n-7=-19$
(9) $4-3 w=-2$
(17) $-2 x+5=-7$
(10) $5-6 x=-13$
(11) $8-3 t=2$
(12) $12-5 x=7$
(13) $4 a-20=0$
(14) $3 y-9=0$
(15) $6+2 b=0$
(16) $10+5 m=0$
(18) $-5 d+3=-12$

## Solve for the Unknown

(19) $-12 x+30=-6$
(20) $-13=-11 y+9$
(21) $2=7-5 a$
(22) $3=11-4 n$
(23) $-35=-6 b+1$
(24) $-8 x+3=-29$
(25) $-3 m-21=0$
(26) $-5 x-30=0$
(27) $-4 y+15=15$
(28) $-3 x+19=19$

## Solve for the Unknown

(39) $7-9 a=4$
(40) $9=-12 c+5$
(41) $0=-18 x+7$
(42) $\quad 2 y+\frac{1}{3}=\frac{7}{3}$
(43) $\quad 4 a+\frac{3}{4}=\frac{19}{4}$
(44) $2 n-\frac{3}{4}=\frac{13}{4}$
(45) $3 x-\frac{5}{6}=\frac{13}{6}$
(46) $\quad 5 y+\frac{3}{7}=\frac{3}{7}$
(47) $\quad 9 x+\frac{4}{5}=\frac{4}{5}$

## Solve for the Unknown

Section B
(56) $\frac{1}{2} a-3=1$
(57) $\quad \frac{1}{3} m-1=5$
(58) $\quad \frac{2}{5} y+4=6$
(59) $\quad \frac{3}{4} n+7=13$
(60) $\quad-\frac{2}{3} x+1=7$
(61) $\quad-\frac{3}{8} b+4=10$
(62) $\frac{x}{4}-6=1$
(63) $\frac{y}{5}-2=3$

## Solve for the Unknown

(73) $7=\frac{2 x}{5}+4$
(74) $5-\frac{4 c}{7}=8$
(75) $7-\frac{5}{9} y=9$

## Section C

(76) $6 a+3+2 a=11$
(77) $5 y+9+2 y=23$
(78) $7 x-4-2 x=6$
(79) $11 z-3-7 z=9$
(80) $2 x-6 x+1=9$
(81) $b-8 b+1=-6$
(82) $3=7 x+9-4 x$
(83) $-1=5 m+7-m$
(84) $8=4 n-6+3 n$

## Solve for the Unknown

(85) $8 x+5=4 x+13$
(86) $\quad 6 y+2=y+17$
(87) $5 x-4=2 x+5$
(88) $13 b-1=4 b-19$
(89) $15 x-2=4 x-13$
(90) $7 a-5=2 a-20$
(91) $3 x+1=11-2 x$
(92) $n-2=6-3 n$
(93) $2 x-3=-11-2 x$
(94) $4 y-2=-16-3 y$

## Solve for the Unknown

(105) $8 m=3 m+20$
(106) $\quad 9 y=5 y+16$
(107) $8 b+5=5 b+7$
(108) $\quad 6 y-1=2 y+2$
(109) $7 x-8=x-3$
(110) $2 y-7=-1-2 y$
(111) $2 m-1=-6 m+5$

## Section D

(112) $5 x+2(x+1)=23$
(113) $6 y+2(2 y+3)=16$
(114) $9 n-3(2 n-1)=15$
(115) $12 x-2(4 x-6)=28$
(116) $7 a-(3 a-4)=12$
(117) $9 m-4(2 m-3)=11$
(118) $5(3-2 y)+4 y=3$
(119) $4(1-3 x)+7 x=9$
(120) $5 y-3=7+4(y-2)$

## Solve for the Unknown

(121) $5+2(3 b+1)=3 b+5$
(122) $6-4(3 a-2)=2(a+5)$
(123) $7-3(2 a-5)=3 a+10$
(124) $2 a-5=4(3 a+1)-2$
(125) $5-(9-6 x)=2 x-2$
(126) $7-(5-8 x)=4 x+3$
(127) $3[2-4(y-1)]=3(2 y+8)$
(128) $5[2-(2 x-4)]=2(5-3 x)$
(129) $3 a+2[2+3(a-1)]=2(3 a+4)$
(130) $5+3[1+2(2 x-3)]=6(x+5)$
(131) $-2[4-(3 b+2)]=5-2(3 b+6)$
(132) $-4[x-2(2 x-3)]+1=2 x-3$

## Solve for the Unknown

Isolate $x$, in terms of $y$

1. $y=5 x$
2. $y=-7 x$
3. $y=12 x$
4. $y=1 / 2 x$
5. $y=x / 6$
6. $y=-x / 4$
7. $y=x-6$
8. $y=10+x$
9. $\mathrm{y}=-4-\mathrm{x}$
10. $y=2 x+2$
11. $y=1 / 2 x+4$
12. $y=-1 / 4 x-6$
13. $y=3 x-3$
14. $y=4-4 x$
15. $y=-6+2 x$
16. $y=8-1 / 2 x$
17. $y=-10-2 x$
18. $y=-12+x / 6$
19. $y=18-6 x$
20. $y=-6-1 / 2 x$

## Tips for Multiplying Polynomials

When multiplying a polynomial by a monomial, you use the distributive property of multiplication to multiply each term in the polynomial by the monomial.

$$
a(b+c+d+e)=a b+a c+a d+a e
$$

When multiplying a binomial by a binomial, you use the mnemonic FOIL to remind you of the order with which you multiply terms in the binomials. $(a+b)(c+d)$
$\mathbf{F}$ is for first. Multiply the first terms of each binomial.
$([a]+b)([c]+d)$ gives the term $a c$.
$\mathbf{O}$ is for outer. Multiply the outer terms of each binomial.
$([a]+b)(c+[d])$ gives the term $a d$.
I is for inner. Multiply the inner terms of each binomial. $\quad(a+[b])([c]+d)$ gives the term $b c$.
$\mathbf{L}$ is for last. Multiply the last terms of each binomial.
$(a+[b])(c+[d])$ gives the term $b d$. Then you combine the terms. $a c+a d+b c+b d$

Multiplying a trinomial by a binomial is relatively easy. You proceed similarly to the way you would when using the distributive property of multiplication. Multiply each term in the trinomial by the first and then the second term in the binomial. Then add the results.

$$
(a+b)(c+d+e)=(a c+a d+a e)+(b c+b d+b e)
$$

## Practice

Multiply the following polynomials.

1. $x(5 x+3 y-7)$
2. $2 a\left(5 a^{2}-7 a+9\right)$
3. $4 b c\left(3 b^{2} c+7 b-9 c+2 b c^{2}-8\right)$
4. $3 m n\left(-4 m+6 n+7 m n^{2}-3 m^{2} n\right)$
5. $4 x\left(9 x^{3}+\frac{3}{x^{2}}-x^{4}+\frac{6 x-1}{x^{2}}\right)$
6. $(x+3)(x+6)$
7. $(x-4)(x-9)$
8. $(2 x+1)(3 x-7)$
9. $(x+2)(x-3 y)$
10. $(7 x+2 y)(2 x-4 y)$
11. $(5 x+7)(5 x-7)$
12. $(28 x+7)\left(\frac{x}{7}-11\right)$
13. $\left(3 x^{2}+y^{2}\right)\left(x^{2}-2 y^{2}\right)$
14. $\left(4+2 x^{2}\right)(9-3 x)$
15. $\left(2 x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right)$
16. $(x+2)\left(3 x^{2}-5 x+2\right)$
17. $(2 x-3)\left(x 3+3 x^{2}-4 x\right)$
18. $(4 a+b)\left(5 a^{2}+2 a b-b^{2}\right)$
19. $(3 y-7)\left(6 y^{2}-3 y+7\right)$
20. $(3 x+2)\left(3 x^{2}-2 x-5\right)$
21. $(x+2)(2 x+1)(x-1)$
22. $(3 a-4)(5 a+2)(a+3)$
23. $(2 n-3)(2 n+3)(n+4)$
24. $(5 r-7)\left(3 r^{4}+2 r^{2}+6\right)$
25. $\left(3 x^{2}+4\right)(x-3)\left(3 x^{2}-4\right)$

Module \#4: Linear Equations

Four Ways to Define a Line

## Data Table

Cartesian Plot

| $X$ | $Y$ |
| :---: | :---: |
| -6 | -6 |
| -5 | -4 |
| -4 | -2 |
| -3 | 0 |
| -2 | 2 |
| -1 | 4 |
| 0 | 6 |



## Eyeballing the

y-intercept
Does the line cross above the X axis? Then the $y$-intercept is positive.

Does the line cross below the $X$ axis? Then the $y$-intercept is negative.

$b$ negative


For the three graphs below, answer the following questions:

1) Is the $y$-intercept positive or negative?
2) Is the $y$-intercept close to zero, or is it a big number?


December 4, 2019 10:21 AM


- 109 -

© $M M X I X$


## Eyeballing the

## slope sign

Does the line "slope up," left to right? Then the slope is positive.

If the line "slopes down," left to right, the slope is negative.


For the three graphs below, is the slope positive or negative?


December 4, 2019 10:21 AM


## Eyeballing the

## slope magnitude

Is the slope positive?
And the line "steep"? Then the slope is greater than one

Is the slope positive? Is the line "flat"?
Then the slope is greater than zero, but less than one.



For the three graphs below, answer the following questions:

1) Is the slope positive or negative?
2) Is the slope close to zero, or is it a big number?


December 4, 2019 10:21 AM


© $M M X I X$

## Eyeballing the

 slope magnitudeIs the slope negative? And the line "flat"? Then the slope must be less than zero, but greater than negative one.

Is the slope negative? And the line "steep"? Then the slope is less than negative one.

$$
-1<m<0
$$


$m<-1$


For the three graphs below, answer the following questions:

1) Is the slope positive or negative?
2) Is the slope close to zero, or is it a big number?


December 4, 2019 10:21 AM


## Graphing Linear Equations

This chapter asks you to find solutions to linear equations by graphing. The solution of a linear equation is the set of ordered pairs that form a line on a coordinate graph. Every point on the line is a solution for the equation. One method for graphing the solution is to use a table with $x$ and $y$ values that are solutions for the particular equation. You select a value for $x$ and solve for the $y$ value. But in this chapter, we will focus on the slope and $y$-intercept method.

The slope and $y$-intercept method may require you to change an equation into the slope-intercept form. That is, the equation with two variables must be written in the form $y=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{b}$. Written in this form, the $\boldsymbol{m}$ value is a number that represents the slope of the solution graph and the $\boldsymbol{b}$ is a number that represents the $y$-intercept. The slope of a line is the ratio of the change in the $y$ value over the change in the $x$ value from one point on the solution graph to another. From one point to another, the slope is the rise over the run. The $y$-intercept is the point where the solution graph (line) crosses the $y$-axis. Another way of saying that is: The $y$-intercept is the place where the value of $x$ is 0 .

## Tips for Graphing Linear Equations

- Rewrite the given equation in the form $y=m x+b$.
- Use the $\boldsymbol{b}$ value to determine where the line crosses the $y$-axis. That is the point $(0, b)$.
- Use the value of $\boldsymbol{m}$ as the slope of the equation. Write the slope as a fraction. If the value of $\boldsymbol{m}$ is a whole number, the slope is the whole number over 1 . The value of $\boldsymbol{m}$ is $=\frac{\text { change in } y}{\text { change in } x}$.
- If the value of $\boldsymbol{m}$ is negative, use a negative sign in only the numerator or the denominator, not both. For example, $\frac{-3}{4}=\frac{-3}{4}=\frac{3}{-4}$.

Plotting ( $x, y$ ) Coordinates

| $x$ | $y$ |  |  |
| :---: | :---: | :---: | :---: |
| -13 | 11 | $x$ | $y$ |
| -11 | 3 | -11 | 9 |
| -8 | 8 | -9 | 6 |
| -2 | 6 | -6 | 11 |
| -1 | 9 | -2 | 8 |
| -13 | -6 | 1 | 3 |
| -7 | -5 | 10 | 3 |
| -3 | -5 | 10 | 12 |
| -4 | -8 | -12 | -7 |
| -4 | -11 | -9 | -10 |
| 5 | -5 | 1 | -6 |
| 13 | -8 | 5 | -10 |
| 3 | 11 | 6 | -12 |
| 4 | 4 | 8 | -6 |
| 9 | 8 | 12 | -3 |
| $x$ | $y$ | 13 | -10 |
| -12 | 10 | $x$ | $y$ |
| -10 | 4 | -9 | 7 |
| -7 | 10 | -1 | 4 |
| 8 | 11 | -1 | 11 |
| 11 | 4 | 1 | 7 |
| 11 | 7 | 1 | 11 |
| -13 | -7 | 5 | 12 |
| -7 | -7 | 7 | 10 |
| -8 | -11 | 9 | 3 |
| 0 | -4 | -8 | -12 |
| 2 | -8 | -9 | -9 |
| 5 | -7 | -1 | 12 |
| 7 | -9 | 1 | 11 |
| 9 | -8 | 5 | 12 |
| 13 | -5 | 10 | 10 |
|  | 12 | 12 |  |



- 114 -
© $\operatorname{MMXIX}$

Plotting $(x, y)$ Coordinates

| $x$ | $y$ | $x$ | $y$ |
| :---: | :---: | :---: | :---: |
| -13 | 10 | -13 | 4 |
| -11 | 7 | -10 | 11 |
| -8 | 10 | -9 | 7 |
| -6 | 5 | -7 | 4 |
| -4 | 3 | -4 | 7 |
| -3 | 11 | -1 | 7 |
| 8 | 10 | 2 | 11 |
| 10 | 7 | 2 | 3 |
| 7 | -5 | 9 | 5 |
| 7 | -7 | 9 | 10 |
| 10 | -12 | -9 | -7 |
| 3 | -12 | -7 | -5 |
| 10 | -8 | -1 | -7 |
| -6 | -9 | 7 | -10 |
| -2 | -8 | 11 | -11 |
| $x$ | $y$ | $x$ | $y$ |
| -12 | 10 | -13 | 6 |
| -10 | 4 | -9 | 3 |
| -7 | 10 | -7 | 9 |
| 8 | 11 | -3 | 6 |
| 11 | 4 | -2 | 4 |
| 11 | 7 | 6 | 11 |
| -13 | -7 | 9 | 8 |
| -7 | -7 | 10 | 11 |
| -8 | -11 | -12 | -12 |
| 0 | -4 | -9 | -9 |
| 2 | -8 | -5 | -11 |
| 5 | -7 | -2 | -5 |
| 7 | -9 | -1 | -12 |
| 9 | -8 | -6 | -4 |
| 13 | -5 | -6 | -9 |
|  |  |  |  |

Plotting $(x, y)$ Coordinates

| $x$ | $y$ | $x$ | $y$ |
| :---: | :---: | :---: | :---: |
| -13 | 10 | -13 | 4 |
| -11 | 7 | -10 | 11 |
| -8 | 10 | -9 | 7 |
| -6 | 5 | -7 | 4 |
| -4 | 3 | -4 | 7 |
| -3 | 11 | -1 | 7 |
| 8 | 10 | 2 | 11 |
| 10 | 7 | 2 | 3 |
| 7 | -5 | 9 | 5 |
| 7 | -7 | 9 | 10 |
| 10 | -12 | -9 | -7 |
| 3 | -12 | -7 | -5 |
| 10 | -8 | -1 | -7 |
| -6 | -9 | 7 | -10 |
| -2 | -8 | 11 | -11 |
| $x$ | $y$ | $x$ | $y$ |
| -12 | 10 | -13 | 6 |
| -10 | 4 | -9 | 3 |
| -7 | 10 | -7 | 9 |
| 8 | 11 | -3 | 6 |
| 11 | 4 | -2 | 4 |
| 11 | 7 | 6 | 11 |
| -13 | -7 | 9 | 8 |
| -7 | -7 | 10 | 11 |
| -8 | -11 | -12 | -12 |
| 0 | -4 | -9 | -9 |
| 2 | -8 | -5 | -11 |
| 5 | -7 | -2 | -5 |
| 7 | -9 | -1 | -12 |
| 9 | -8 | -6 | -4 |
| 13 | -5 | -6 | -9 |
|  |  |  |  |


-116-
© $M M X I X$

$$
y=-3 x+5
$$

| $x$ | $y$ |
| :--- | ---: |
| 0 |  |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| -1 |  |
| -2 |  |
| -3 |  |



$$
y=x-3
$$

| $x$ | $y$ | $x$ | $y$ |
| :---: | :---: | :---: | :---: |
| 0 |  | -1 |  |
| 1 |  | -2 |  |
| 2 |  | -3 |  |
| 3 |  | -4 |  |

$$
\begin{array}{lc|cc|c}
y=-3 x-14 & x & y & x & y \\
\hline-4 & & 0 & \\
-5 & & -1 & \\
-6 & & \\
& & & &
\end{array}
$$




Plotting Linear Equations

$$
\begin{aligned}
& y=-2 x-3 \\
& \begin{array}{l|ll|l}
x & y & x & y \\
\hline 0 & & -1 & \\
1 & & -2 & \\
2 & & -3 & \\
3 & & -4 &
\end{array} \\
& y=\frac{1}{3} x+3
\end{aligned}
$$




Plotting Linear Equations

$$
\begin{aligned}
& \begin{array}{ll|l|l}
y=\frac{1}{2} x-6 & x & y & x \\
\hline-2 & & y \\
\hline-4 & & \\
\hline-6 & & 4 & \\
\hline & 8 & & \\
& & 8 &
\end{array} \\
& y=-x-3
\end{aligned}
$$




Plotting Linear Equations
$y=-3 x+9$

$y=-x-7$

$y=\frac{1}{2} x-3$

$y=2 x+6$

$y=2 x-3$


$$
y=-2 x-2
$$



$y=-x-3$


Plotting Linear Equations
$y=x-3$


$$
y=-3 x+4
$$



$y=2 x-2$

(1) $y=x+12$
(2) $y=2 x-5$
(3) $y=-3 x$
(4) $y=-2 x-9$


Graphing Linear Equations


Graphing Linear Equations

$$
\begin{aligned}
& y=-4 x+8 \\
& y=-3 x-2 \\
& y=-3 x+5 \\
& y=-3 x-4 \\
& y=-2 x+4 \\
& y=-x+6 \\
& y=-x-13 \\
& y=-1 / 4 x-10 \\
& y=-1 / 2 x+1 \\
& y=-1 / 2 x-5 \\
& y=1 / 2 x+7 \\
& y=x-4 \\
& y=2 x+1 \\
& y=2 x+6 \\
& y=3 x-4 \\
& y=3 x+4 \\
& y=4 x+2
\end{aligned}
$$



Graphing Linear Equations

Graphing Linear Equations

$$
\begin{align*}
& y=-4 x+8 \\
& y=-3 x-2 \\
& y=-3 x+5 \\
& y=-3 x-4 \\
& y=-2 x+4 \\
& y=-x+6 \\
& y=-x-13 \\
& y=-1 / 4 x-10  \tag{1}\\
& y=-1 / 2 x+1 \\
& y=-1 / 2 x-5 \\
& y=1 / 2 x+5 \\
& y=x-4 \\
& y=2 x+1 \\
& y=2 x+6 \\
& y=3 x-4 \\
& y=3 x+4 \\
& y=4 x+2
\end{align*}
$$



Graphing Linear Equations

$$
\begin{aligned}
& y=-4 x+8 \\
& y=-3 x-2 \\
& y=-3 x+5 \\
& y=-3 x-4 \\
& y=-2 x+4 \\
& y=-x+6 \\
& y=-x-13 \\
& y=-1 / 4 x-10 \\
& y=-1 / 2 x+1 \\
& y=-1 / 2 x-5 \\
& y=1 / 2 x+5 \\
& y=x-4 \\
& y=2 x+1 \\
& y=2 x+6 \\
& y=3 x-4 \\
& y=3 x+3 \\
& y=4 x+2
\end{aligned}
$$



Graphing Linear Equations

$$
\begin{align*}
& y=-5 x+2 \\
& y=-4 x-4 \\
& y=-3 x+8 \\
& y=-2 x-12 \\
& y=-x+13  \tag{4}\\
& y=-1 / 2 x-6 \\
& y=-1 / 2 x+1 \\
& y=-1 / 4 x-8 \\
& y=1 / 4 x+10 \\
& y=1 / 2 x-3 \\
& y=1 / 2 x+5  \tag{3}\\
& y=x-2 \\
& y=2 x+3 \\
& y=3 x-4 \\
& y=4 x+7 \\
& y=5 x-8
\end{align*}
$$

Graphing Linear Equations

$$
\begin{aligned}
& y=-5 x+2 \\
& y=-4 x-4 \\
& y=-3 x+8 \\
& y=-2 x-13 \\
& y=-x+13 \\
& y=-1 / 2 x-6 \\
& y=-1 / 2 x+1 \\
& y=-1 / 4 x-8 \\
& y=1 / 4 x+10 \\
& y=1 / 2 x-3 \\
& y=1 / 2 x+5 \\
& y=x-2 \\
& y=2 x+3 \\
& y=3 x-4 \\
& y=4 x+7 \\
& y=5 x-8
\end{aligned}
$$



Graphing Linear Equations

$$
\begin{align*}
& y=-5 x+2 \\
& y=-4 x-4 \\
& y=-3 x+13 \\
& y=-2 x-12 \\
& y=-x+13 \\
& y=-1 / 2 x-6 \\
& y=-1 / 2 x+1 \\
& y=-1 / 4 x-8 \\
& y=1 / 4 x+10 \\
& y=1 / 2 x-3 \\
& y=1 / 2 x+5 \\
& y=x-2  \tag{2}\\
& y=2 x+3 \\
& y=3 x-3 \\
& y=4 x+7 \\
& y=5 x-8
\end{align*}
$$



Graphing Linear Equations

Graphing Linear Equations

$$
\begin{align*}
& y=-5 x+8 \\
& y=-3 x-6 \\
& y=-3 x+2 \\
& y=-2 x-12 \\
& y=-2 x+9 \\
& y=-x+10 \\
& y=-1 / 4 x-8 \\
& y=1 / 4 x+3 \\
& y=1 / 2 x-3 \\
& y=1 / 2 x+4  \tag{3}\\
& y=1 / 2 x+10 \\
& y=x-5  \tag{1}\\
& y=2 x-12 \\
& y=2 x+4 \\
& y=4 x-8 \\
& y=4 x+13 \\
& y=5 x-7
\end{align*}
$$



Graphing Linear Equations

$$
\begin{align*}
& y=-5 x+8 \\
& y=-3 x-6 \\
& y=-3 x+2 \\
& y=-2 x-12  \tag{2}\\
& y=-2 x+9 \\
& y=-x+10 \\
& y=-1 / 4 x-8 \\
& y=1 / 4 x+3 \\
& y=1 / 2 x-3 \\
& y=1 / 2 x+4 \\
& y=1 / 2 x+10 \\
& y=x-5  \tag{4}\\
& y=2 x-12 \\
& y=2 x+4 \\
& y=4 x-8 \\
& y=4 x+13 \\
& y=5 x-7
\end{align*}
$$

(3) 1 y


Graphing Linear Equations

$$
\begin{aligned}
& y=-5 x+8 \\
& y=-3 x-6 \\
& y=-3 x+2 \\
& y=-2 x-12 \\
& y=-2 x+9 \\
& y=-x+10 \\
& y=-1 / 4 x-8 \\
& y=1 / 4 x+3 \\
& y=1 / 2 x-3 \\
& y=1 / 2 x+4 \\
& y=1 / 2 x+10 \\
& y=x-5 \\
& y=2 x-12 \\
& y=2 x+4 \\
& y=4 x-8 \\
& y=4 x+13 \\
& y=5 x-7
\end{aligned}
$$

Graphing Linear Equations

$$
\begin{aligned}
& y=-4 x-9 \\
& y=-3 x-2 \\
& y=-2 x-4 \\
& y=-x-6 \\
& y=-x+11 \\
& y=-1 / 2 x+10 \\
& y=-1 / 4 x-5 \\
& y=1 / 4 x-6 \\
& y=1 / 4 x+5 \\
& y=1 / 2 x+3 \\
& y=1 / 2 x+7 \\
& y=x-8 \\
& y=2 x+4 \\
& y=2 x+12 \\
& y=3 x-8 \\
& y=4 x+2
\end{aligned}
$$



$$
\begin{aligned}
& y=-4 x-9 \\
& y=-3 x-2 \\
& y=-2 x-4 \\
& y=-x-7 \\
& y=-x+11 \\
& y=-1 / 2 x+10 \\
& y=-1 / 4 x-5 \\
& y=1 / 4 x-6 \\
& y=1 / 4 x+5 \\
& y=1 / 2 x+3 \\
& y=1 / 2 x+7 \\
& y=x-8 \\
& y=2 x+4 \\
& y=2 x+12 \\
& y=3 x-8 \\
& y=4 x+2
\end{aligned}
$$

Graphing Linear Equations

$$
\begin{aligned}
& y=-4 x-9 \\
& y=-3 x-2 \\
& y=-2 x-4 \\
& y=-x-6 \\
& y=-x+11 \\
& y=-1 / 2 x+10 \\
& y=-1 / 4 x-5 \\
& y=1 / 4 x-6 \\
& y=1 / 4 x+5 \\
& y=1 / 2 x+3 \\
& y=1 / 2 x+7 \\
& y=x-8 \\
& y=2 x+4 \\
& y=2 x+12 \\
& y=3 x-8 \\
& y=4 x+2
\end{aligned}
$$



Graphing Linear Equations
(1)
$y$


$$
\begin{aligned}
& y=-4 x-9 \\
& y=-3 x-2 \\
& y=-2 x-4 \\
& y=-x-6 \\
& y=-x+11 \\
& y=-1 / 2 x+10 \\
& y=-1 / 4 x-5 \\
& y=1 / 4 x-6 \\
& y=1 / 4 x+5 \\
& y=1 / 2 x+3 \\
& y=1 / 2 x+7 \\
& y=x-8 \\
& y=2 x+4 \\
& y=2 x+12 \\
& y=3 x-8 \\
& y=4 x+2
\end{aligned}
$$

Module \#5:

## Dimensional Analysis

## What is Dimensional Analysis?

These questions ask you to think about how one variable relates to or interacts with others in an equation. There are 3 possible variations you may see:

- Positive vs. negative
- Increase vs. decrease
- Try out each answer choice

We'll review approaches for each variation. You will see a total of 5 of these types of questions on your exam.

## Positive vs. Negative

These questions will provide an equation consisting of multiple variables and will tell you that certain variables are positive or negative. The answer choices will ask you to determine whether the remaining variables are positive or negative.

How to approach:

- Note the information given about which variables are positive and negative directly on your equation.
- Write down whether each remaining variable could be positive or negative before you go to the answer choices.

Q1.

$$
W=\frac{Q R X}{T}
$$

In the formula above, if $W$ is positive and $R$ is negative, which of the following statements could be true?
A. $\quad T$ is positive and $Q$ and $X$ are negative.
B. $\quad T, Q$, and $X$ are negative.
C. $T, Q$, and $X$ are positive.
D. $\quad T$ and $Q$ are negative and $X$ is positive.

## Increase vs. decrease

These questions will provide an equation consisting of multiple variables and will tell you that a certain variable is increasing or decreasing, while the others may remain constant. The answer choices will ask you to determine what happens to a given variable as a result.

How to approach:

- Note the information given about which variables are increasing/decreasing/staying the same directly on your equation.
- Write down whether each remaining variable would increase/decrease/remain constant before you go to the answer choices.

Q2.

$$
C=\frac{y z}{w x}
$$

In the formula above, if $w$ increases while $x, y$, and $z$ remain constant, which of the following statements about $C$ is true?
A. C increases.
B. C becomes zero.
C. C decreases.
D. C does not change.

## Try out each answer choice

These questions will provide an equation consisting of multiple variables and will ask you to evaluate what happens to one variable if another variable is assigned certain qualities (positive, negative, smaller than, greater than).

How to approach:

- As the name suggests, you will need to try out the condition given in each answer choice to see what happens. This takes a little more time, but you can use the answer choices to help you work efficiently.
- Pick a number for the variable that fits with the new information given and write down the number you try. If the outcome you get doesn't match what the answer choice says, eliminate the choice.
- Be sure to try out all the answer choices, eliminating each time you get a conflicting result.

Q3. $W=\frac{R}{3}-2$

Which of the following statements is true for the formula above?
A. When the value of $R$ is greater than $6, W$ is negative.
B. When the value of $R$ is less than $6, W$ is positive.
C. When the value of $R$ is greater than $3, W$ is positive.
D. When the value of $R$ is less than $6, W$ is negative.

## Dimensional Analysis Drill \#1

1. 

$$
R=\frac{P}{W V^{2}}
$$

In the formula above, if $R$ is positive and W is negative, which of the following statements must be true?
A. $V$ is negative.
B. $V$ is positive.
C. $P$ is negative.
D. $P$ is positive.
2.

$$
A=\frac{B C}{D}
$$

In the formula above, if $B$ is positive and $D$ is negative, which of the following statements could be true?
A. $A$ is negative and $C$ is negative.
B. A is negative and $C$ is positive.
C. A and $C$ are positive.
D. $A, B$, and $C$ are positive.
3.

$$
K=\frac{H^{2}}{J M P}
$$

In the formula above, if $K$ is negative, which of the following statements could be true?
A. J, M, and $P$ are positive.
B. $J$ and $M$ are negative and $P$ is positive.
C. $M$ and $P$ are negative and $J$ is positive.
D. $J$ and $P$ are positive and $M$ is negative.

## Dimensional Analysis Drill \#1

4. 

$$
v=\frac{w y}{r}
$$

In the formula above, if $w$ increases while $v$ remains constant, which of the following statements could be true?
A. $y$ and $r$ remain constant.
B. y remains constant and $r$ decreases.
C. $r$ remains constant and $y$ decreases.
D. $r$ remains constant and $y$ increases.
5. $T=V X Y$

In the formula above, if $X$ remains constant and $T$ increases, which of the following statements could be true?
A. $V$ increases and $Y$ remains constant.
B. $V$ decreases and $Y$ remains constant.
C. $V$ and $Y$ decrease.
D. $Y$ decreases and $V$ remains constant.
6.

$$
w=\frac{25 x r}{s t}
$$

In the formula above, if $w$ and $s$ remain constant and $x$ decreases, which of the following statements could be true?
A. $r$ decreases and $t$ remains constant.
B. $r$ increases and $t$ remains constant.
C. $r$ and $t$ remain constant.
D. $t$ increases and $r$ remains constant.

## Dimensional Analysis Drill \#1

7. $x=5 w-3$

Which of the following statements is true for the formula above?
A. If $w$ is greater than 1 , then $x$ is negative.
B. If $w$ is negative, then $x$ is positive.
C. If $w$ is negative, then $x$ is negative.
D. If $w$ is greater than 3 , then $x$ is negative.
8. $B=10-\frac{C}{4}$

Which of the following statements is true for the formula above?
A. If $C$ is greater than 40 , then $B$ is positive.
B. If $C$ is less than 40 , then $B$ is negative.
C. If $C$ is less than 20 , then $B$ is negative.
D. If $C$ is greater than 40 , then $B$ is negative.
9. $7 t-1=r$

Which of the following statements is true for the formula above?
A. When $t>1, r<0$.
B. When $t=0, r=0$.
C. When $t<0, r>0$.
D. When $t<0, r<0$.
10.

$$
f=\frac{g h}{5}
$$

Which of the following statements is true for the formula above?
A. If $g$ and $h$ are each greater than 0 , then $f$ is greater than 0 .
B. If $g h=5$, then $f=0$.
C. If $g$ and $h$ are each less than 0 , then $f$ is less than 0 .
D. If $g$ is greater than 0 and $h$ is less than 0 , then $f$ is greater than 0 .

## Dimensional Analysis Drill \#2

1. 

$$
z=\frac{w x}{v y}
$$

In the formula above, if $w, x$, and $y$ are all the same sign, which of the following statements could be true?
A. $v, y$, and $z$ are negative.
B. $w, v$, and $z$ are negative.
C. $x$ and $v$ are positive and $z$ is negative.
D. $y$ and $z$ are negative and $v$ is positive.
2. $G=F^{2} H J$

In the formula above, if $H$ is negative, which of the following statements could be true?
A. $G$ and $J$ are positive.
B. $G, F$, and $J$ are positive.
C. $G$ is negative and $J$ is positive.
D. $G$ and $J$ are negative.
3.

$$
N=\frac{R S^{3}}{T}
$$

In the formula above, if $N$ and $T$ are positive, which of the following statements could be true?
A. $R$ is positive and $S$ is negative.
B. $R$ is positive and $S$ is positive.
C. $R$ is negative and $S$ is positive.
D. $R$ and $S$ have opposite signs.

## Dimensional Analysis Drill \#2

4. 

$$
c=\frac{b d e}{a f}
$$

In the formula above, if $c$ decreases and $b, d$, and a remain constant, which of the following statements could be true?
A. e increases and $f$ decreases.
B. e and $f$ both remain constant.
C. e remains constant and $f$ increases.
D. $f$ remains constant and $e$ increases.
5. $v=\frac{32 x^{2}}{u}$

In the formula above, if $x$ remains constant, which of the following statements could be true?
A. If $u$ increases, then $v$ increases.
B. If $u$ decreases, then $v$ decreases.
C. If $u$ decreases, then $v$ does not change.
D. If $u$ increases, then $v$ decreases.
6. $h=\frac{k l m}{4 n^{2}}$

In the formula above, if $n>1$ and increasing, and $k$ and $l$ are constant, which of the following statements could be true?
A. $m$ increases and $h$ remains constant.
B. $m$ decreases and $h$ increases.
C. $m$ and $h$ remain constant.
D. $m$ remains constant and $h$ increases.

## Dimensional Analysis Drill \#2

7. 

$$
Q=\frac{R}{4}-7
$$

Which of the following statements is true for the formula above?
A. When $R>28, Q$ is negative.
B. When $R>28, Q$ is positive.
C. When $R<28, Q$ is positive.
D. When $R<4, Q$ is positive.
8. $w=6 t-5$

Which of the following statements is true for the formula above?
A. When $t<5 / 6, w$ is negative.
B. When $t>5 / 6, w$ is negative.
C. When $t=0, w$ is positive.
D. When $t<1 / 2, w$ is positive.
9. $D=C^{2}-2 A$

Which of the following statements is true for the formula above?
A. If $C>2$ and $A<2, D$ is negative.
B. If $C<2$ and $A>2, D$ is positive.
C. If $C<-2$ and $A<2, D$ is negative.
D. If $C<-2$ and $A>2, D$ is positive.
10. $y=8 n-\frac{x}{3}$

Which of the following statements is true for the formula above?
A. If $x>3$ and $n>2, y$ is negative.
B. If $x=3$ and $n<0, y$ is positive.
C. If $x>3$ and $n<1 / 8, y$ is negative.
D. If $x>6$ and $n<1 / 4, y$ is positive.

| Volts | Ohms | Volts | Ohms |
| :---: | ---: | :---: | ---: |
| 2 | 2.4 | 26 | 32.0 |
| 6 | 7.4 | 30 | 37.0 |
| 10 | 12.4 | 34 | 41.8 |
| 14 | 16.8 | 38 | 46.8 |
| 18 | 22.0 | 42 | 51.6 |
| 22 | 27.0 |  |  |


| Amps | Ohms | Amps | Ohms |
| :---: | :---: | :---: | :---: |
| 4 | 50.0 | 26 | 7.7 |
| 6 | 33.3 | 30 | 6.7 |
| 10 | 20.0 | 34 | 5.9 |
| 14 | 14.3 | 38 | 5.3 |
| 18 | 11.1 | 42 | 4.8 |
| 22 | 9.1 | 46 | 4.3 |

Formulas

$$
\begin{gathered}
E=I \times R \\
I=\frac{E}{R} \quad R=\frac{E}{I} \\
\hline I \quad R \quad I \times E \\
I=\frac{P}{E} \quad E=\frac{P}{I}
\end{gathered}
$$




| Volts | Amps | Volts | Amps | Volts | Watts | Volts | Watts |
| :---: | ---: | :---: | :---: | ---: | ---: | ---: | ---: |
| 4 | 50.0 | 26 | 7.7 | 2 | 2.3 | 26 | 29.3 |
| 6 | 33.3 | 30 | 6.7 | 6 | 6.8 | 30 | 33.8 |
| 10 | 20.0 | 34 | 5.9 | 10 | 11.3 | 34 | 38.3 |
| 14 | 14.3 | 38 | 5.3 | 14 | 15.8 | 38 | 42.8 |
| 18 | 11.1 | 42 | 4.8 | 18 | 20.3 | 42 | 47.3 |
| 22 | 9.1 | 46 | 4.3 | 22 | 24.8 | 46 | 51.8 |

$$
\begin{gathered}
E=I \times R \\
I=\frac{E}{R} \quad R=\frac{E}{I} \\
\hline I \\
\hline P=I \times E \\
\hline I \\
\hline P \\
I=\frac{P}{E} \quad E=\frac{P}{I}
\end{gathered}
$$




Mathematical Relationships

Direct Relationship

Inverse Relationship


